Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness

XL Yang, K Tornqvist and JE Dowling
Journal of Neuroscience 1 July 1988, 8 (7) 2269-2278; https://doi.org/10.1523/JNEUROSCI.08-07-02269.1988
XL Yang
Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Tornqvist
Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JE Dowling
Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Following the destruction of the terminals of the dopaminergic interplexiform cells by intraocular injections of 6-hydroxydopamine (6- OHDA), cone horizontal cells exhibited high light responsiveness in prolonged darkness and their responses to moderate and bright full- field flashes were as large as 60 mV. Furthermore, the light responsiveness of these cells in the 6-OHDA-treated retinas was not enhanced by background illumination. The application of dopamine (50 microM) by superfusion to 6-OHDA-treated retinas resulted in a decrease in light responsiveness and changes in response waveform of the cone horizontal cells. Twenty minutes following dopamine application the responses of the cone horizontal cells closely resembled the response of cells recorded in prolonged dark-adapted retinas. Dopamine caused similar changes in cone horizontal cells recorded in light-exposed retinas, but had no obvious effects on rod horizontal cells. The selective dopamine D1 receptor antagonist, Sch 23390, enhanced cone horizontal cell responsiveness when applied to prolonged dark-adapted retinas, mimicking background illumination. The light responsiveness of cone horizontal cells recorded after application of Sch 23390 was less than that for cells in retinas that had been exposed to background lights, but light responsiveness could not be further enhanced by background illumination. Another dopamine antagonist, (+)-butaclamol, was found to have effects similar to Sch 23390 on cone horizontal cells, but (-)-butaclamol, the inactive enantiomer, did not enhance the light responsiveness of these cells. The results suggest that the dopaminergic interplexiform cells play a crucial role in the regulation of cone horizontal cell responsiveness by prolonged darkness and background illumination. These cells may release dopamine tonically in the dark, which suppresses cone horizontal cell responsiveness. Background illumination may decrease dopamine release and liberate cone horizontal cells from the suppression.

Back to top

In this issue

The Journal of Neuroscience: 8 (7)
Journal of Neuroscience
Vol. 8, Issue 7
1 Jul 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness
XL Yang, K Tornqvist, JE Dowling
Journal of Neuroscience 1 July 1988, 8 (7) 2269-2278; DOI: 10.1523/JNEUROSCI.08-07-02269.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness
XL Yang, K Tornqvist, JE Dowling
Journal of Neuroscience 1 July 1988, 8 (7) 2269-2278; DOI: 10.1523/JNEUROSCI.08-07-02269.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.