Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The effect of down regulation of protein kinase C on the inhibitory modulation of dorsal root ganglion neuron Ca2+ currents by neuropeptide Y

DA Ewald, HJ Matthies, TM Perney, MW Walker and RJ Miller
Journal of Neuroscience 1 July 1988, 8 (7) 2447-2451; DOI: https://doi.org/10.1523/JNEUROSCI.08-07-02447.1988
DA Ewald
Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HJ Matthies
Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TM Perney
Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MW Walker
Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RJ Miller
Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Dorsal root ganglion (DRG) neurons cultured from neonatal rats contained high concentrations of protein kinase C (PKC). Normally, the majority of the enzyme activity was found in the cytosol and considerably less was associated with the membrane fraction. Upon incubation with the phorbol ester phorbol dibutyrate (PDBu, 10(-6) M) for 20 min, PKC activity increased in the membrane-associated fraction and decreased in the cytoplasmic fraction. Longer incubations with phorbol ester also induced a decline in membrane-associated PKC activity. If incubations were continued for periods of over 10 hr, both membrane and cytosolic PKC activity declined essentially to zero. Down- regulation of PKC had no effect on the number or affinity of 125I- neuropeptide Y (NPY) binding sites on DRG cells or on the absolute magnitude of the DRG Ca2+ current. However, the ability of NPY to inhibit the DRG Ca2+ current was greatly reduced. When sustained Ca2+ currents were evoked from depolarized holding potentials (-40 mV), all concentrations of NPY (10(-10)-10(-7) M) were less effective. In contrast, higher concentrations of NPY still blocked the transient portion of the DRG Ca2+ current evoked from hyperpolarized holding potentials. These results support the suggestion that PKC is involved in the inhibitory modulation of DRG Ca2+ currents by neurotransmitters. The precise role of PKC may vary depending on the type of Ca2+ channel involved.

Back to top

In this issue

The Journal of Neuroscience: 8 (7)
Journal of Neuroscience
Vol. 8, Issue 7
1 Jul 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The effect of down regulation of protein kinase C on the inhibitory modulation of dorsal root ganglion neuron Ca2+ currents by neuropeptide Y
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The effect of down regulation of protein kinase C on the inhibitory modulation of dorsal root ganglion neuron Ca2+ currents by neuropeptide Y
DA Ewald, HJ Matthies, TM Perney, MW Walker, RJ Miller
Journal of Neuroscience 1 July 1988, 8 (7) 2447-2451; DOI: 10.1523/JNEUROSCI.08-07-02447.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The effect of down regulation of protein kinase C on the inhibitory modulation of dorsal root ganglion neuron Ca2+ currents by neuropeptide Y
DA Ewald, HJ Matthies, TM Perney, MW Walker, RJ Miller
Journal of Neuroscience 1 July 1988, 8 (7) 2447-2451; DOI: 10.1523/JNEUROSCI.08-07-02447.1988
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.