Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Voltage-gated potassium channels in larval CNS neurons of Drosophila

CK Solc and RW Aldrich
Journal of Neuroscience 1 July 1988, 8 (7) 2556-2570; DOI: https://doi.org/10.1523/JNEUROSCI.08-07-02556.1988
CK Solc
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RW Aldrich
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The availability of genetic, molecular, and biophysical techniques makes Drosophila an ideal system for the study of ion channel function. We have used the patch-clamp technique to characterize voltage-gated K+ channels in cultured larval Drosophila CNS neurons. Whole-cell currents from different cells vary in current kinetics and magnitude. Most of the cells contain a transient A-type 4-AP-sensitive current. In addition, many cells also have a more slowly inactivating TEA-sensitive component and/or a sustained component. No clear correlation between cell morphology and whole-cell current kinetics was observed. Single- channel analysis in cell-free patches revealed that 3 types of channels, named A2, KD, and K1 can account for the whole-cell currents. None of these channels requires elevated intracellular calcium concentration for activation. The A2 channels have a conductance of 6–8 pS and underlie the whole-cell A current. They turn on rapidly, inactivate in response to depolarizing voltage steps, and are completely inactivated by prepulses to -50 mV. The KD (delayed) channels have a conductance of 10–16 pS and can account, in part, for the more slowly inactivating component of whole-cell current. They have longer open times and activate and inactivate more slowly than the A2 channels. The K1 channels have a slope conductance, measured between 0 and +40 mV, of 20–40 pS. These channels do not inactivate during 500 msec voltage steps and thus can contribute to the sustained component of current. They exhibit complex gating behavior with increased probability of being open at higher voltages. Although the K1 channels are sufficient to account for the noninactivating component of whole- cell current, we have observed several other channel types that have a similar voltage dependence and average kinetics.

Back to top

In this issue

The Journal of Neuroscience: 8 (7)
Journal of Neuroscience
Vol. 8, Issue 7
1 Jul 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Voltage-gated potassium channels in larval CNS neurons of Drosophila
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Voltage-gated potassium channels in larval CNS neurons of Drosophila
CK Solc, RW Aldrich
Journal of Neuroscience 1 July 1988, 8 (7) 2556-2570; DOI: 10.1523/JNEUROSCI.08-07-02556.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Voltage-gated potassium channels in larval CNS neurons of Drosophila
CK Solc, RW Aldrich
Journal of Neuroscience 1 July 1988, 8 (7) 2556-2570; DOI: 10.1523/JNEUROSCI.08-07-02556.1988
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.