Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Nerve growth factor enhances dendritic arborization of sympathetic ganglion cells in developing mammals

WD Snider
Journal of Neuroscience 1 July 1988, 8 (7) 2628-2634; DOI: https://doi.org/10.1523/JNEUROSCI.08-07-02628.1988
WD Snider
Department of Neurology and Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent observations have suggested that the dendritic arbors of sympathetic ganglion cells may be regulated by interactions with their peripheral targets (Voyvodic, 1987a; Yawo, 1987). In order to assess a potential mechanism for such interactions, I have investigated the effects of the target-derived trophic molecule for sympathetic ganglion cells on the development of dendrites in the rat superior cervical ganglion. Systemic treatment of neonatal animals with NGF for 1 or 2 weeks results in a striking expansion of ganglion cell dendritic arbors, as revealed by intracellular staining with HRP. During this period, neurons in treated animals extend new primary dendrites, and the length and branching of existing dendrites are increased compared to age-matched controls. These results support the idea that targets may regulate ganglion cell arbors via elaboration of NGF, and suggest an explanation for the correlation between animal size and dendritic complexity noted in several recent studies (Purves and Lichtman, 1985a; Snider, 1987; Voyvodic, 1987a).

Back to top

In this issue

The Journal of Neuroscience: 8 (7)
Journal of Neuroscience
Vol. 8, Issue 7
1 Jul 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nerve growth factor enhances dendritic arborization of sympathetic ganglion cells in developing mammals
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Nerve growth factor enhances dendritic arborization of sympathetic ganglion cells in developing mammals
WD Snider
Journal of Neuroscience 1 July 1988, 8 (7) 2628-2634; DOI: 10.1523/JNEUROSCI.08-07-02628.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Nerve growth factor enhances dendritic arborization of sympathetic ganglion cells in developing mammals
WD Snider
Journal of Neuroscience 1 July 1988, 8 (7) 2628-2634; DOI: 10.1523/JNEUROSCI.08-07-02628.1988
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.