Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey

MF Eckenhoff and P Rakic
Journal of Neuroscience 1 August 1988, 8 (8) 2729-2747; DOI: https://doi.org/10.1523/JNEUROSCI.08-08-02729.1988
MF Eckenhoff
Section of Neuroanatomy, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Rakic
Section of Neuroanatomy, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The nature of proliferative cells in the subgranular zone (SGZ) of the hippocampal region and the fate of their progeny was analyzed by 3H- thymidine (3H-TdR) autoradiography combined with immunocytochemistry at the light and electron microscopic levels in 18 rhesus monkeys ranging in age from late gestation to 17 years. Our analysis indicates that, during the last quarter of gestation and the first 3 postnatal months, the SGZ produces both glial and neuronal cells. These 2 major classes of cells originate from the 2 precursor lines and, following their mitotic division, migrate to the granular layer. During the juvenile period (4–6 months of age), neuronal production tapers off and most postmitotic cells remaining within the SGZ differentiate into glial elements. In postpubertal animals (3 years and older), the 3H-TdR- labeled cells in the dentate gyrus belong to several non-neuronal classes. The largest group was immunoreactive to the glial fibrillary acidic protein (GFAP) at both the light and electron microscopic levels, indicating their astrocytic nature. The remaining 3H-TdR- labeled, GFAP-negative cells had ultra-structural characteristics of either microglia, oligodendroglia, or their progenitory stem cells. Therefore, there is a continuing addition and/or turnover of the glial cells in the dentate gyrus of sexually mature monkeys, but, in contrast to the massive neurogenesis reported in adult rodents, the production of new neurons could not be detected after puberty. The significance of a stable population of neurons in the hippocampal formation of mature primates is discussed in relation to its possible function in memory.

Back to top

In this issue

The Journal of Neuroscience: 8 (8)
Journal of Neuroscience
Vol. 8, Issue 8
1 Aug 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey
MF Eckenhoff, P Rakic
Journal of Neuroscience 1 August 1988, 8 (8) 2729-2747; DOI: 10.1523/JNEUROSCI.08-08-02729.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey
MF Eckenhoff, P Rakic
Journal of Neuroscience 1 August 1988, 8 (8) 2729-2747; DOI: 10.1523/JNEUROSCI.08-08-02729.1988
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.