Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Primate motor cortex and free arm movements to visual targets in three- dimensional space. II. Coding of the direction of movement by a neuronal population

AP Georgopoulos, RE Kettner and AB Schwartz
Journal of Neuroscience 1 August 1988, 8 (8) 2928-2937; https://doi.org/10.1523/JNEUROSCI.08-08-02928.1988
AP Georgopoulos
Philip Bard Laboratories of Neurophysiology, Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RE Kettner
Philip Bard Laboratories of Neurophysiology, Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AB Schwartz
Philip Bard Laboratories of Neurophysiology, Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We describe a code by which a population of motor cortical neurons could determine uniquely the direction of reaching movements in three- dimensional space. The population consisted of 475 directionally tuned cells whose functional properties are described in the preceding paper (Schwartz et al., 1988). Each cell discharged at the highest rate with movements in its “preferred direction” and at progressively lower rates with movements in directions away from the preferred one. The neuronal population code assumes that for a particular movement direction each cell makes a vectorial contribution (“votes”) with direction in the cell's preferred direction and magnitude proportional to the change in the cell's discharge rate associated with the particular direction of movement. The vector sum of these contributions is the outcome of the population code (the “neuronal population vector”) and points in the direction of movement in space well before the movement begins.

Back to top

In this issue

The Journal of Neuroscience: 8 (8)
Journal of Neuroscience
Vol. 8, Issue 8
1 Aug 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Primate motor cortex and free arm movements to visual targets in three- dimensional space. II. Coding of the direction of movement by a neuronal population
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Primate motor cortex and free arm movements to visual targets in three- dimensional space. II. Coding of the direction of movement by a neuronal population
AP Georgopoulos, RE Kettner, AB Schwartz
Journal of Neuroscience 1 August 1988, 8 (8) 2928-2937; DOI: 10.1523/JNEUROSCI.08-08-02928.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Primate motor cortex and free arm movements to visual targets in three- dimensional space. II. Coding of the direction of movement by a neuronal population
AP Georgopoulos, RE Kettner, AB Schwartz
Journal of Neuroscience 1 August 1988, 8 (8) 2928-2937; DOI: 10.1523/JNEUROSCI.08-08-02928.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.