Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Differential expression of pseudoconditioning and sensitization by siphon responses in Aplysia: novel response selection after training

MT Erickson and ET Walters
Journal of Neuroscience 1 August 1988, 8 (8) 3000-3010; DOI: https://doi.org/10.1523/JNEUROSCI.08-08-03000.1988
MT Erickson
Department of Physiology and Cell Biology, University of Texas Medical School, Houston 77225.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ET Walters
Department of Physiology and Cell Biology, University of Texas Medical School, Houston 77225.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nonassociative training with a noxious unconditioned stimulus (US) applied to the head or tail of freely moving Aplysia caused a qualitative change in siphon responses to midbody test stimulation, so that the midbody test responses came to resemble the unconditioned siphon response (UR) to the US when tested 1 d after exposure to the US. Such a nonassociative, US-induced transformation of test responses into responses resembling the UR has traditionally been termed “pseudoconditioning.” Short-term pseudoconditioning was compared to sensitization and to habituation in a reduced preparation that used a photocell to distinguish “head-type” siphon responses from qualitatively different “tail-type” responses. Transformation of test responses (pseudoconditioning) was observed only when the type of preexisting alpha response to the midbody test stimulus was different from the UR. Sensitization, defined as a US-induced enhancement of the alpha response to the test stimulus, was observed when the initial alpha response and the UR were of the same type. General sensory facilitation was excluded as a critical mechanism for pseudoconditioning by the observation that the same midbody test response could be transformed to either a head-type or tail-type response, depending on the site of the US, and by the observation that simply increasing the intensity of the midbody test stimulus in the absence of a head or tail US did not produce similar response transformations. These studies demonstrate pseudoconditioning in a preparation amenable to analysis at the level of identified neurons, and draw attention to a distinctive and widespread form of behavioral modifiability that has been neglected by investigators of learning.

Back to top

In this issue

The Journal of Neuroscience: 8 (8)
Journal of Neuroscience
Vol. 8, Issue 8
1 Aug 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential expression of pseudoconditioning and sensitization by siphon responses in Aplysia: novel response selection after training
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Differential expression of pseudoconditioning and sensitization by siphon responses in Aplysia: novel response selection after training
MT Erickson, ET Walters
Journal of Neuroscience 1 August 1988, 8 (8) 3000-3010; DOI: 10.1523/JNEUROSCI.08-08-03000.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential expression of pseudoconditioning and sensitization by siphon responses in Aplysia: novel response selection after training
MT Erickson, ET Walters
Journal of Neuroscience 1 August 1988, 8 (8) 3000-3010; DOI: 10.1523/JNEUROSCI.08-08-03000.1988
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.