Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Biochemical and physiological consequences of an age-related increase in acetylcholinesterase activity at the rat neuromuscular junction

DO Smith and M Emmerling
Journal of Neuroscience 1 August 1988, 8 (8) 3011-3017; DOI: https://doi.org/10.1523/JNEUROSCI.08-08-03011.1988
DO Smith
Department of Physiology, University of Wisconsin, Madison 53706.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Emmerling
Department of Physiology, University of Wisconsin, Madison 53706.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Acetylcholinesterase (AChE) specific activity was assayed using diaphragm muscles obtained from mature adult (10 months) and aged (25– 27 months) rats. Biochemical assays indicated significant age-related increases in the AChE specific activity of both noninnervated and innervated tissue. The different molecular forms of AChE were separated by velocity sedimentation and were further assayed. The age-related increase was manifest primarily in the 10S (G4) form in both noninnervated and innervated tissue and also the 16S (A12) form of the noninnervated samples. To ascertain more conclusively whether AChE activity in the end-plate junctional region of innervated tissue changed in the older rats, miniature end-plate currents (m.e.p.c.s) were recorded under voltage-clamp conditions before and after AChE inhibition. When AChE activity was inhibited by 10 microM echothiopate or 1 mM methanesulfonyl fluoride, m.e.p.c. amplitudes and decay time constants increased in both age groups. The magnitude of these increases was larger in the older animals. However, calculations of the relative change in m.e.p.c. amplitudes after AChE inhibition indicated that less ACh was hydrolyzed by AChE in the older animals. Inhibition of AChE did not affect mean channel open time, which was estimated from spectral analyses of ACh-induced membrane noise. These data indicate that the prolonged decay times in the older rats following AChE inhibition is quite likely due to an expanded field of postsynaptic ACh receptors and not exclusively to a change in junctional AChE.

Back to top

In this issue

The Journal of Neuroscience: 8 (8)
Journal of Neuroscience
Vol. 8, Issue 8
1 Aug 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biochemical and physiological consequences of an age-related increase in acetylcholinesterase activity at the rat neuromuscular junction
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Biochemical and physiological consequences of an age-related increase in acetylcholinesterase activity at the rat neuromuscular junction
DO Smith, M Emmerling
Journal of Neuroscience 1 August 1988, 8 (8) 3011-3017; DOI: 10.1523/JNEUROSCI.08-08-03011.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Biochemical and physiological consequences of an age-related increase in acetylcholinesterase activity at the rat neuromuscular junction
DO Smith, M Emmerling
Journal of Neuroscience 1 August 1988, 8 (8) 3011-3017; DOI: 10.1523/JNEUROSCI.08-08-03011.1988
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.