Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Disconnection of the amygdala from visual association cortex impairs visual reward-association learning in monkeys

EA Gaffan, D Gaffan and S Harrison
Journal of Neuroscience 1 September 1988, 8 (9) 3144-3150; https://doi.org/10.1523/JNEUROSCI.08-09-03144.1988
EA Gaffan
Department of Psychology, Reading University, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Gaffan
Department of Psychology, Reading University, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Harrison
Department of Psychology, Reading University, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cynomolgus monkeys (Macaca fascicularis) were trained in a task that assessed their ability to associate visual stimuli with food reward. Acquisition of stimulus-reward associations was measured under 2 conditions, a 2-stimuli acquisition condition and a 1-stimulus acquisition condition. On each trial in the 2-stimuli condition, the positive (correct) and negative (incorrect) stimuli were presented side by side and the animal chose one by touching it; if the choice was correct, a food reward was dispensed. On each trial in the 1-stimulus condition, either the positive or the negative stimulus was presented alone; if the stimulus was the positive, it was followed by reward delivery, regardless of the animal's response to it, and if it was the negative, it was not followed by reward delivery. Thus, reward delivery was contingent upon the animal's response to the stimuli in the 2- stimuli condition but not in the 1-stimulus condition. The effect of acquisition trials under these 2 conditions was measured, in both conditions, by the animal's subsequent choice when presented with the 2 stimuli side by side. Following preoperative training in this task, the animals were first subjected to unilateral ablation of the inferotemporal cortex. This operation had little effect on the animals' learning ability. Then, the amygdala was ablated in the hemisphere contralateral to that in which the unilateral inferotemporal ablation had been carried out. This combination of crossed unilateral lesions of the amygdala and of the inferotemporal cortex, which disconnects the amygdala from the output of visual association cortex, produced a profound impairment in stimulus-reward-associative learning.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 8 (9)
Journal of Neuroscience
Vol. 8, Issue 9
1 Sep 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Disconnection of the amygdala from visual association cortex impairs visual reward-association learning in monkeys
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Disconnection of the amygdala from visual association cortex impairs visual reward-association learning in monkeys
EA Gaffan, D Gaffan, S Harrison
Journal of Neuroscience 1 September 1988, 8 (9) 3144-3150; DOI: 10.1523/JNEUROSCI.08-09-03144.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Disconnection of the amygdala from visual association cortex impairs visual reward-association learning in monkeys
EA Gaffan, D Gaffan, S Harrison
Journal of Neuroscience 1 September 1988, 8 (9) 3144-3150; DOI: 10.1523/JNEUROSCI.08-09-03144.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.