Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Organization of adult motor cortex representation patterns following neonatal forelimb nerve injury in rats

JP Donoghue and JN Sanes
Journal of Neuroscience 1 September 1988, 8 (9) 3221-3232; DOI: https://doi.org/10.1523/JNEUROSCI.08-09-03221.1988
JP Donoghue
Center for Neural Science, Brown University, Providence, Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JN Sanes
Center for Neural Science, Brown University, Providence, Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Somatotopic representation patterns in the motor cortex (MI) of rats that had a unilateral forelimb amputation on the first postnatal day were examined after 2–4 months of survival. Intracortical electrical stimulation and recording techniques were used to map the somatic representation in MI and in the somatic sensory cortex (SI). In normal rats, vibrissa, forelimb, and hindlimb areas comprise the bulk of the MI representation. Stimulation within the forelimb area elicits elbow, wrist, or digit movements at the lowest current intensities. The proximal limb representation appears to be contained within the distal forelimb area, since shoulder movements are nearly always evoked by stimulating at higher current intensities at some distal forelimb sites. In agreement with previous studies, the distal forelimb representation overlapped the adjacent part of the granular SI cortex. Following removal of the forelimb at birth, 3 novel features of MI organization were observed. First, the areas from which stimulation evoked movements of the vibrissa or the shoulder musculature were larger than normal. Stimulation thresholds were lower than those required for comparable movements in normal rats throughout these areas, suggesting that nerve section had not simply unmasked a high- threshold representation. Second, vibrissa movements were more commonly paired with movements of the proximal forelimb muscles at the same site. Third, stimulation in the adjacent granular SI cortex failed to evoke shoulder or trunk movements, although receptive-field mapping in this region showed that cells were responsive to cutaneous stimulation of the trunk and shoulder region. These results indicate that several organizational features develop differently in MI following perinatal nerve injury: certain remaining muscle groups have enlarged cortical representations, there is a strengthening of some normally weak connections from MI to the proximal musculature, and muscles are grouped in unusual combinations. These data demonstrate that the formation of MI representation patterns is strongly influenced by nerve injury during the perinatal period.

Back to top

In this issue

The Journal of Neuroscience: 8 (9)
Journal of Neuroscience
Vol. 8, Issue 9
1 Sep 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Organization of adult motor cortex representation patterns following neonatal forelimb nerve injury in rats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Organization of adult motor cortex representation patterns following neonatal forelimb nerve injury in rats
JP Donoghue, JN Sanes
Journal of Neuroscience 1 September 1988, 8 (9) 3221-3232; DOI: 10.1523/JNEUROSCI.08-09-03221.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Organization of adult motor cortex representation patterns following neonatal forelimb nerve injury in rats
JP Donoghue, JN Sanes
Journal of Neuroscience 1 September 1988, 8 (9) 3221-3232; DOI: 10.1523/JNEUROSCI.08-09-03221.1988
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.