Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Phosphorylation of neurofilament proteins in intact neurons: demonstration of phosphorylation in cell bodies and axons

MM Black and VM Lee
Journal of Neuroscience 1 September 1988, 8 (9) 3296-3305; https://doi.org/10.1523/JNEUROSCI.08-09-03296.1988
MM Black
Department of Anatomy, Temple University School of Medicine, Philadelphia, PA 19140.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
VM Lee
Department of Anatomy, Temple University School of Medicine, Philadelphia, PA 19140.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The principal subunits of neurofilaments (NFs) of immature cultured sympathetic neurons have apparent Mr of 68,000 and 145,000; a 200,000 Mr subunit is also present, but at comparatively low levels. These subunits are referred to as the low (NFL), middle (NFM), and high (NFH) Mr subunits, respectively. We studied the phosphorylation of NFL and NFM in these neurons in order to characterize the NFL and NFM isoforms generated by this important posttranslational modification. NFL resolved into a single spot in 2-dimensional gels, although 2 spots were occasionally observed. NFM typically resolved into 3 variants, termed NFM a, b, and c, in order of increasing mobility, but as many as 6 variants were detected in some gels. NFL and, to a much greater degree, NFM became labeled following incubation of intact neurons with 32P-PO4. Although all 3 major NFM variants became labeled, NFM a was the most heavily labeled, followed by NFM b, and then NFM c. Two observations suggest that the generation of these 3 NFM variants is due to their phosphorylation. First, treatment of NFs with phosphatase prior to analysis reduced NFM to a single spot or band that comigrated with NFM c; NFM a and b were completely eliminated. However, NFM c was not fully dephosphorylated because it still reacted with a monoclonal antibody (mAb) specific for a phosphate-dependent epitope on NFM. Second, NFM was recognized by 4 mAbs to distinctly different phosphorylated epitopes of NFM, which suggested that at least 4 distinct sites on NFM can be phosphorylated in cultured neurons. Explant cultures were used to study the phosphorylation of NFL and NFM in cell bodies and axons. In these cultures, a central cell body mass (CBM) 0.5 mm in diameter contains all of the cell bodies, while peripheral to the CBM is a halo of pure axons that extends for 4–6 mm. These cultures were incubated with 32P-PO4 and CBM and axon regions were analyzed separately. NFL became phosphorylated to a greater extent in the CBM than in axons. NFM also became labeled in the CBM and axons, although the relative labeling of NFM a, b, and c in these regions differed considerably from each other and also from the pattern observed in whole neurons (cell bodies plus neurites, see above).(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 8 (9)
Journal of Neuroscience
Vol. 8, Issue 9
1 Sep 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Phosphorylation of neurofilament proteins in intact neurons: demonstration of phosphorylation in cell bodies and axons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Phosphorylation of neurofilament proteins in intact neurons: demonstration of phosphorylation in cell bodies and axons
MM Black, VM Lee
Journal of Neuroscience 1 September 1988, 8 (9) 3296-3305; DOI: 10.1523/JNEUROSCI.08-09-03296.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Phosphorylation of neurofilament proteins in intact neurons: demonstration of phosphorylation in cell bodies and axons
MM Black, VM Lee
Journal of Neuroscience 1 September 1988, 8 (9) 3296-3305; DOI: 10.1523/JNEUROSCI.08-09-03296.1988
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.