Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Distribution of somatostatin immunoreactivity in the human dentate gyrus

DG Amaral, R Insausti and MJ Campbell
Journal of Neuroscience 1 September 1988, 8 (9) 3306-3316; DOI: https://doi.org/10.1523/JNEUROSCI.08-09-03306.1988
DG Amaral
Salk Institute for Biological Studies, San Diego, California 92138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Insausti
Salk Institute for Biological Studies, San Diego, California 92138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MJ Campbell
Salk Institute for Biological Studies, San Diego, California 92138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In previous immunohistochemical studies in the rat and monkey, a system of somatostatin-positive neurons and fibers was observed in the dentate gyrus of the hippocampal formation. In both species, somatostatin- immunoreactive cell bodies are located primarily in the deep or polymorphic layer of the dentate gyrus, and they give rise to a fiber system that terminates principally in the outer two-thirds of the molecular layer. In the present study, we employed the same antisera and staining procedures to determine whether the organization of the somatostatin system in the human dentate gyrus is similar to that seen in the rat and nonhuman primate. Sections of human postmortem brain material incubated with antisera directed against somatostatin 28 (S320) or somatostatin 28 (S309) demonstrated a heterogeneous population of immunoreactive cells in the hilar region of the human dentate gyrus. Fiber staining was observed both in the hilar region and throughout the molecular layer, but the densest fiber and terminal plexus were observed in the outer two-thirds of the molecular layer. In addition, there were forms of somatostatin-immunoreactive profiles in the human sections that were not previously observed in the rat or monkey. Immunoreactive, grapelike clusters of apparently large, axonal varicosities were commonly observed, for example, as were dendritic profiles containing typical dendritic spines. In general, however, staining for somatostatin immunoreactivity in the human dentate gyrus presented a picture qualitatively similar to that observed in the rat and monkey. Thus, immunohistochemical methods have allowed the analysis of a chemically defined neural system in the human brain that has been extensively studied in rat and monkey brains with both experimental and immunohistochemical methods. That the pattern of labeling in the human sections closely parallels that observed in the experimental animals provides support for the contention that immunohistochemical methods can reliably be employed to determine the normal neuroanatomical organization of the human brain. These methods may also be particularly applicable for the analysis of pathological brain conditions. In particular, alterations of the hippocampal somatostatin system have been associated with both Alzheimer's disease and temporal lobe epilepsy. It would be of interest, therefore, to apply immunohistochemical procedures to determine whether the anatomical organization of the human hippocampal somatostatin system is altered in these diseases.

Back to top

In this issue

The Journal of Neuroscience: 8 (9)
Journal of Neuroscience
Vol. 8, Issue 9
1 Sep 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distribution of somatostatin immunoreactivity in the human dentate gyrus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Distribution of somatostatin immunoreactivity in the human dentate gyrus
DG Amaral, R Insausti, MJ Campbell
Journal of Neuroscience 1 September 1988, 8 (9) 3306-3316; DOI: 10.1523/JNEUROSCI.08-09-03306.1988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Distribution of somatostatin immunoreactivity in the human dentate gyrus
DG Amaral, R Insausti, MJ Campbell
Journal of Neuroscience 1 September 1988, 8 (9) 3306-3316; DOI: 10.1523/JNEUROSCI.08-09-03306.1988
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.