Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the trophic rescue of granule cells from target-related cell death

MW Vogel, K Sunter and K Herrup
Journal of Neuroscience 1 October 1989, 9 (10) 3454-3462; DOI: https://doi.org/10.1523/JNEUROSCI.09-10-03454.1989
MW Vogel
Department of Human Genetics, Yale Medical School, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Sunter
Department of Human Genetics, Yale Medical School, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Herrup
Department of Human Genetics, Yale Medical School, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies of wild-type mice or mutant-wild-type mouse chimeras using the neurological mutant staggerer have supported a numerical matching hypothesis for target-related cell death. However, analyses of chimeras of a second neurological mutant, lurcher, have suggested that there may be significant flexibility in the relationship between the numbers of pre- and postsynaptic neurons. Whereas in staggerer chimeras there is a strict proportionality between the number of cerebellar granule cells and their postsynaptic target, the Purkinje cells, in lurcher chimeras, Wetts and Herrup (1983) report a relative increase in granule cell survival. We have reexamined the numerical matching between Purkinje and granule cells in an additional 5 lurcher----wild- type and 4 wild-type----wild-type chimerase. Our findings confirm and extend the results of the previous study to show that there is a close correlation between the number of granule and Purkinje cells in +/Lc chimeras, but for any given number of Purkinje cells in the +/Lc chimeras, more granule cells survive than in staggerer chimeras or inbred mouse strains. Whereas the ratio of granule to Purkinje cells in staggerer chimeras or inbred mouse strains is constant across all target sizes, in +/Lc chimeras the ratio of granule cells to Purkinje cells increases as the number of target neurons decreases. It seems likely that the increased granule cell survival is somehow related to the delayed degeneration of the +/Lc fraction of target cells in the +/Lc chimeras. Among the possible explanations for the observed results, we favor the hypothesis that a trophic factor is produced in +/Lc chimeras in response to the deafferentation of Purkinje cells that is capable of rescuing granule cells from target-related cell death. Our preference is based, in part, on observations of the state of the dendritic tree of the wild-type Purkinje cells that survive in +/Lc chimeras (Caddy et al., 1986).

Back to top

In this issue

The Journal of Neuroscience: 9 (10)
Journal of Neuroscience
Vol. 9, Issue 10
1 Oct 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the trophic rescue of granule cells from target-related cell death
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the trophic rescue of granule cells from target-related cell death
MW Vogel, K Sunter, K Herrup
Journal of Neuroscience 1 October 1989, 9 (10) 3454-3462; DOI: 10.1523/JNEUROSCI.09-10-03454.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the trophic rescue of granule cells from target-related cell death
MW Vogel, K Sunter, K Herrup
Journal of Neuroscience 1 October 1989, 9 (10) 3454-3462; DOI: 10.1523/JNEUROSCI.09-10-03454.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.