Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

GABA-activated Cl- channels in astrocytes of hippocampal slices

BA MacVicar, FW Tse, SA Crichton and H Kettenmann
Journal of Neuroscience 1 October 1989, 9 (10) 3577-3583; DOI: https://doi.org/10.1523/JNEUROSCI.09-10-03577.1989
BA MacVicar
Department of Medical Physiology, University of Calgary, Alberta, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
FW Tse
Department of Medical Physiology, University of Calgary, Alberta, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SA Crichton
Department of Medical Physiology, University of Calgary, Alberta, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Kettenmann
Department of Medical Physiology, University of Calgary, Alberta, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We used kainic acid-lesioned hippocampal slices to examine glial responses to the inhibitory neurotransmitter GABA in a neuron-free environment. Slices were prepared from rats which received intracerebroventricular injections of kainic acid 1 month prior to experiments. Astrocytes (membrane potential averaged 81.4 +/- 5.5 mV; n = 46; mean +/- SD) were impaled in the CA3 region of the slice, which was completely depleted of neurons. GABA (1 mM) application by bath perfusion depolarized membrane potential from 1 to 5 mV. The GABA- induced depolarization was not affected by a tetrodotoxin (1 microM)/high-Mg2+/low-Ca2+ solution. Changing the Cl- equilibrium potential by reducing extracellular Cl- greatly increased the GABA- induced depolarization. Muscimol mimicked the GABA response, while picrotoxin (0.1 mM), an antagonist of the GABA-activated Cl- channel, resulted in a 60% blockade. The barbiturate, pentobarbital (0.1 mM), and the benzodiazepine agonist, flunitrazepam (1 mM), enhanced the depolarization by 60 and 40%, respectively. A blocker of glial GABA uptake, beta-alanine (1 mM), did not affect the GABA-induced membrane depolarization, indicating that the depolarization is not caused by electrogenic uptake of the amino acid. The pharmacological properties of the GABA response of astrocytes from the hippocampal slice is similar to that previously described for cultured astrocytes from rat cerebral hemispheres. Our data suggest that GABA receptors, which are coupled to Cl- channels, are also expressed by astrocytes in an intact tissue.

Back to top

In this issue

The Journal of Neuroscience: 9 (10)
Journal of Neuroscience
Vol. 9, Issue 10
1 Oct 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
GABA-activated Cl- channels in astrocytes of hippocampal slices
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
GABA-activated Cl- channels in astrocytes of hippocampal slices
BA MacVicar, FW Tse, SA Crichton, H Kettenmann
Journal of Neuroscience 1 October 1989, 9 (10) 3577-3583; DOI: 10.1523/JNEUROSCI.09-10-03577.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
GABA-activated Cl- channels in astrocytes of hippocampal slices
BA MacVicar, FW Tse, SA Crichton, H Kettenmann
Journal of Neuroscience 1 October 1989, 9 (10) 3577-3583; DOI: 10.1523/JNEUROSCI.09-10-03577.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.