Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture

MP Mattson, M Murrain, PB Guthrie and SB Kater
Journal of Neuroscience 1 November 1989, 9 (11) 3728-3740; DOI: https://doi.org/10.1523/JNEUROSCI.09-11-03728.1989
MP Mattson
Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington 40536.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Murrain
Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington 40536.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PB Guthrie
Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington 40536.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SB Kater
Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington 40536.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neuritic regression and cell death (neurodegeneration) are common features of both normal nervous system development and neurodegenerative disorders. Growth factors and excitatory amino acid neurotransmitters have been suggested independently to play roles in neurodegenerative processes. The present study investigated the combined effects of fibroblast growth factor (FGF) and glutamate on the development and degeneration of cultured hippocampal neurons. Consistent with previous data, we found that FGF, but not NGF, promoted neuronal survival and dendritic outgrowth. In contrast, a low level of glutamate (50 microM) caused a reduction in dendritic outgrowth, and high levels (100 microM-1 mM) reduced neuronal survival in a dose- dependent manner. When cultures were maintained in the presence of FGF, there was a striking reduction in neuronal death normally caused by 100– 500 microM glutamate. FGF raised the threshold for glutamate neurotoxicity. FGF also antagonized the outgrowth-inhibiting actions of glutamate. Measurements of intracellular calcium levels with fura-2 demonstrated a direct relationship between glutamate-induced rises in intracellular calcium and neurodegeneration. FGF reduced the glutamate- induced increases in intracellular calcium levels. However, when cultures were pretreated with the RNA synthesis inhibitor actinomycin D or with the protein synthesis inhibitor cycloheximide, FGF did not prevent glutamate-induced increases in intracellular calcium or neurodegeneration. Taken together, these results suggest that (1) interactions between growth factors and neurotransmitters may be important in brain development; (2) imbalances in these systems may lead to neurodegeneration; and (3) cellular calcium-regulating systems may be a common focus of growth factor and neurotransmitter actions.

Back to top

In this issue

The Journal of Neuroscience: 9 (11)
Journal of Neuroscience
Vol. 9, Issue 11
1 Nov 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture
MP Mattson, M Murrain, PB Guthrie, SB Kater
Journal of Neuroscience 1 November 1989, 9 (11) 3728-3740; DOI: 10.1523/JNEUROSCI.09-11-03728.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture
MP Mattson, M Murrain, PB Guthrie, SB Kater
Journal of Neuroscience 1 November 1989, 9 (11) 3728-3740; DOI: 10.1523/JNEUROSCI.09-11-03728.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.