Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum

WJ Scherer and SB Udin
Journal of Neuroscience 1 November 1989, 9 (11) 3837-3843; DOI: https://doi.org/10.1523/JNEUROSCI.09-11-03837.1989
WJ Scherer
Department of Physiology, State University of New York, Buffalo 14214.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SB Udin
Department of Physiology, State University of New York, Buffalo 14214.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glutamate receptors appear to play a key role in several forms of experience-dependent modification of both the strength of synapses and synaptic connectivity. In developing Xenopus frogs, the connections made by isthmotectal axons relaying visual input from the eye to the ipsilateral tectum are markedly influenced by the visual activity of contralateral retinotectal axons, and normal binocular visual input is necessary in order for the ipsilateral visuotectal map to come into register with the contralateral map. We have tested whether NMDA receptors play a role in establishment of the topographic matching of binocular maps during development. We have examined the effects of chronic treatment of tectum with either the receptor agonist NMDA or the antagonists APV or CPP applied throughout early postmetamorphic life using subpial implants of drug-impregnated elvax. Both antagonists blocked the matching of the ipsilateral map to the contralateral map, while NMDA permitted such matching. Our data therefore indicate that NMDA receptors are involved in the experience-dependent establishment of matching binocular maps during development.

Back to top

In this issue

The Journal of Neuroscience: 9 (11)
Journal of Neuroscience
Vol. 9, Issue 11
1 Nov 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum
WJ Scherer, SB Udin
Journal of Neuroscience 1 November 1989, 9 (11) 3837-3843; DOI: 10.1523/JNEUROSCI.09-11-03837.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum
WJ Scherer, SB Udin
Journal of Neuroscience 1 November 1989, 9 (11) 3837-3843; DOI: 10.1523/JNEUROSCI.09-11-03837.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.