Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Interaction of phencyclidine with voltage-dependent potassium channels in cultured rat hippocampal neurons: comparison with block of the NMDA receptor-ionophore complex

JM ffrench-Mullen and MA Rogawski
Journal of Neuroscience 1 November 1989, 9 (11) 4051-4061; DOI: https://doi.org/10.1523/JNEUROSCI.09-11-04051.1989
JM ffrench-Mullen
Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MA Rogawski
Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Whole-cell voltage-clamp recording techniques were used to investigate the blockade of voltage-dependent K+ channels by phencyclidine (PCP) in cultured rat hippocampal neurons. All recordings were carried out in the presence of tetrodotoxin (1–2 microM) to eliminate Na+ currents. Step depolarization from a holding potential of -40 mV activated a slowly rising, minimally inactivating K+ current (IK). PCP (0.5–1000 microM) caused a reduction in the maximum conductance of IK [IC50(+30 mV), 22 microM] without altering its voltage dependency. The PCP block of IK diminished at depolarized potentials. Analysis according to the scheme of Woodhull (1973) suggested that block occurs via binding to an acceptor site (presumably within the channel pore) that senses 40–50% of the transmembrane electrostatic field. PCP had no effect on the kinetic properties of IK and the block failed to show use dependency, suggesting that PCP may bind to the IK channel via a hydrophobic mechanism not requiring open channels. For comparison, we also investigated the effect of PCP on the transient K+ current, IA, activated by step depolarization following a 200 msec prepulse to -90 mV (20 mM tetraethylammonium was present in the bathing solution to reduce IK). In contrast to the potent blocking action of PCP on IK, the drug only affected IA at high concentrations [IC50(+30 mV), 224 microM]. At concentrations causing substantial block (300–500 microM), PCP produced an acceleration in the IA inactivation rate, and, for brief (5–6 msec) depolarizing steps, the suppression of IA was use dependent. These observations suggest that PCP block of IA requires open channels. PCP reduced inward current responses induced by the excitatory amino acid agonist N-methyl-D-aspartate (NMDA) at substantially lower concentrations than those required for its effects on K+ channels [IC50(-60 mV), 0.45 microM]. The PCP-like dioxadrol stereoisomer dexoxadrol (10 microM) blocked NMDA-evoked inward current responses, while its behaviorally inactive enantiomer levoxadrol did not. Dexoxadrol and levoxadrol also blocked IK in a stereoselective fashion (IC50's, 73 and 260 microM, respectively), whereas the sigma ligands (+)- and (-)-SKF 10,047 and (+)-3-[3-hydroxyphenyl]-N-(1- propyl)piperidine [(+)-3-PPP] had little effect on the current (IC50's, greater than 300–500 microM). We conclude that PCP causes a selective, voltage-dependent block of IK in hippocampal neurons via a PCP- and not a sigma-type acceptor site.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 9 (11)
Journal of Neuroscience
Vol. 9, Issue 11
1 Nov 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Interaction of phencyclidine with voltage-dependent potassium channels in cultured rat hippocampal neurons: comparison with block of the NMDA receptor-ionophore complex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Interaction of phencyclidine with voltage-dependent potassium channels in cultured rat hippocampal neurons: comparison with block of the NMDA receptor-ionophore complex
JM ffrench-Mullen, MA Rogawski
Journal of Neuroscience 1 November 1989, 9 (11) 4051-4061; DOI: 10.1523/JNEUROSCI.09-11-04051.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Interaction of phencyclidine with voltage-dependent potassium channels in cultured rat hippocampal neurons: comparison with block of the NMDA receptor-ionophore complex
JM ffrench-Mullen, MA Rogawski
Journal of Neuroscience 1 November 1989, 9 (11) 4051-4061; DOI: 10.1523/JNEUROSCI.09-11-04051.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.