Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Identified serotonergic neurons LCB1 and RCB1 in the cerebral ganglia of Aplysia produce presynaptic facilitation of siphon sensory neurons

SL Mackey, ER Kandel and RD Hawkins
Journal of Neuroscience 1 December 1989, 9 (12) 4227-4235; DOI: https://doi.org/10.1523/JNEUROSCI.09-12-04227.1989
SL Mackey
Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ER Kandel
Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RD Hawkins
Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Several lines of evidence suggest that 5-HT plays a significant role in presynaptic facilitation of the siphon sensory cells contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia. Most recently, Glanzman et al. (1989) found that treatment with the 5-HT neurotoxin, 5,7-DHT markedly reduced both synaptic facilitation and behavioral dishabituation. To provide more direct evidence for a role of 5-HT, we have attempted to identify individual serotonergic facilitator neurons. Hawkins (1989) used histological techniques to locate several serotonergic neurons in the ring ganglia that send axons to the abdominal ganglion and are therefore possible serotonergic facilitators. These include one neuron in the B cluster of each cerebral ganglion, which we have identified electrophysiologically and named the CB1 cells. Both glyoxylic acid histofluorescence and 5-HT immunofluorescence indicate that the CB1 neurons are serotonergic. In a semiintact preparation, the CB1 neurons respond to cutaneous stimulation which produces dishabituation and sensitization (such as tail shock) with an increase in firing, which may outlast the stimulation by 15 min. Intracellular stimulation of a CB1 neuron in a manner similar to its response to tail shock produces facilitation of the EPSPs from siphon sensory neurons to motor neurons, as well as broadening of the action potential in the sensory neurons in tetraethylammonium solution. These results strongly suggest that the identified serotonergic CB1 neurons participate in mediating presynaptic facilitation contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia.

Back to top

In this issue

The Journal of Neuroscience: 9 (12)
Journal of Neuroscience
Vol. 9, Issue 12
1 Dec 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identified serotonergic neurons LCB1 and RCB1 in the cerebral ganglia of Aplysia produce presynaptic facilitation of siphon sensory neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Identified serotonergic neurons LCB1 and RCB1 in the cerebral ganglia of Aplysia produce presynaptic facilitation of siphon sensory neurons
SL Mackey, ER Kandel, RD Hawkins
Journal of Neuroscience 1 December 1989, 9 (12) 4227-4235; DOI: 10.1523/JNEUROSCI.09-12-04227.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Identified serotonergic neurons LCB1 and RCB1 in the cerebral ganglia of Aplysia produce presynaptic facilitation of siphon sensory neurons
SL Mackey, ER Kandel, RD Hawkins
Journal of Neuroscience 1 December 1989, 9 (12) 4227-4235; DOI: 10.1523/JNEUROSCI.09-12-04227.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.