Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction

D Dixon and HL Atwood
Journal of Neuroscience 1 December 1989, 9 (12) 4246-4252; DOI: https://doi.org/10.1523/JNEUROSCI.09-12-04246.1989
D Dixon
Department of Physiology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HL Atwood
Department of Physiology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Long-term facilitation (LTF), a form of synaptic plasticity demonstrated at the crayfish neuromuscular junction, is induced by tetanic stimulation and persists for hours. LTF can be divided into 2 phases: a tetanic phase, which occurs during stimulation, and a long- lasting phase, which persists after stimulation. Activators and potentiators of cAMP (forskolin and 3-isobutyl-methyl-xanthine) produce facilitation of excitatory postsynaptic potentials, which attain approximately the amplitude of the long-lasting phase of LTF but last for a shorter time. Localized presynaptic injection of a protein inhibitor (“Walsh inhibitor”) specific for the cAMP-dependent protein kinase blocks the long-lasting phase of LTF at synapses near the injection site with no apparent effect on the tetanic phase. Normal LTF develops and persists at synapses of the same axon distant from the injection site. Localization of the injected inhibitor was confirmed by fluorescent tagging. Localized injection of SQ22,536, an adenylate cyclase inhibitor, also blocks the second phase of LTF near the injection site, but not at distant synapses. These experiments establish a role for adenylate cyclase activation in the long-lasting phase of LTF. The phosphatidylinositol second-messenger system is not important in LTF as inhibition of phospholipase C by injection of RA233, which blocks facilitatory effects of serotonin, does not affect any aspect of LTF.

Back to top

In this issue

The Journal of Neuroscience: 9 (12)
Journal of Neuroscience
Vol. 9, Issue 12
1 Dec 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction
D Dixon, HL Atwood
Journal of Neuroscience 1 December 1989, 9 (12) 4246-4252; DOI: 10.1523/JNEUROSCI.09-12-04246.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction
D Dixon, HL Atwood
Journal of Neuroscience 1 December 1989, 9 (12) 4246-4252; DOI: 10.1523/JNEUROSCI.09-12-04246.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.