Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus

TD Shou and AG Leventhal
Journal of Neuroscience 1 December 1989, 9 (12) 4287-4302; DOI: https://doi.org/10.1523/JNEUROSCI.09-12-04287.1989
TD Shou
Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AG Leventhal
Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We studied the physiological orientation biases of over 700 relay cells in the cat's dorsal lateral geniculate nucleus (LGNd). Relay cells were sampled at regular intervals along horizontally as well as vertically oriented electrode penetrations in a fashion analogous to that used previously in studies of visual cortex (Hubel and Wiesel, 1962). The strengths of the orientation biases and the distributions of the preferred orientations were determined for different classes of relay cells, relay cells in different layers of the LGNd, and relay cells subserving different parts of the visual field. We find that, at the population level, LGNd cells exhibit about the same degree of orientation bias as do the retinal ganglion cells providing their inputs (see also Soodak et al., 1987). Also, as in the retina (Levick and Thibos, 1982; Leventhal and Schall, 1983), most LGNd cells tend to prefer stimuli oriented radially, i.e., parallel to the line connecting their receptive fields to the area centralis projection. However, the radial bias in the LGNd is weaker than in the retina. Moreover, there is a relative overrepresentation of cells preferring tangentially oriented stimuli in the LGNd but not in the retina. As a result of the overrepresentation of cells preferring radial and tangential stimuli, the overall distribution of preferred orientations varies in regions of the LGNd subserving different parts of the visual field. Reconstructions of our electrode penetrations provide evidence that, unlike in the retina, cells having similar preferred orientations are clustered in the LGNd. This clustering is apparent for all cell types and in all parts of laminae A and A1. The tendency to cluster according to preferred orientation is evident for cells preferring radially, intermediately, and tangentially oriented stimuli and thus is not simply a reflection of the radial bias evident among retinal ganglion cells at the population level. It is already known that cells having inputs from different eyes, on-center, off-center, X-, Y-, W-type, and color-sensitive ganglion cells are distributed nonrandomly in the LGNd of cats and monkeys (for review, see Rodieck, 1979; Stone et al., 1979; Lennie, 1981; Stone, 1983). The finding that relay cells having similar preferred orientations are also distributed nonrandomly suggests that the initial sorting of virtually all properties segregated in visual cortex may begin in the LGNd.

Back to top

In this issue

The Journal of Neuroscience: 9 (12)
Journal of Neuroscience
Vol. 9, Issue 12
1 Dec 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus
TD Shou, AG Leventhal
Journal of Neuroscience 1 December 1989, 9 (12) 4287-4302; DOI: 10.1523/JNEUROSCI.09-12-04287.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus
TD Shou, AG Leventhal
Journal of Neuroscience 1 December 1989, 9 (12) 4287-4302; DOI: 10.1523/JNEUROSCI.09-12-04287.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.