Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment

S Zola-Morgan, LR Squire, DG Amaral and WA Suzuki
Journal of Neuroscience 1 December 1989, 9 (12) 4355-4370; DOI: https://doi.org/10.1523/JNEUROSCI.09-12-04355.1989
S Zola-Morgan
Veterans Administration Medical Center, San Diego, California 92161.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LR Squire
Veterans Administration Medical Center, San Diego, California 92161.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DG Amaral
Veterans Administration Medical Center, San Diego, California 92161.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WA Suzuki
Veterans Administration Medical Center, San Diego, California 92161.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In monkeys, bilateral damage to the medial temporal region produces severe memory impairment. This lesion, which includes the hippocampal formation, amygdala, and adjacent cortex, including the parahippocampal gyrus (the H+A+ lesion), appears to constitute an animal model of human medial temporal lobe amnesia. Reexamination of histological material from previously studied monkeys with H+A+ lesions indicated that the perirhinal cortex had also sustained significant damage. Furthermore, recent neuroanatomical studies show that the perirhinal cortex and the closely associated parahippocampal cortex provide the major source of cortical input to the hippocampal formation. Based on these 2 findings, we evaluated the severity of memory impairment in a group of monkeys that received bilateral lesions limited to the perirhinal cortex and parahippocampal gyrus (the PRPH lesion). The performance of the PRPH group was compared with that of monkeys with H+A+ lesions, who had been studied previously, and with a group of normal monkeys. Monkeys with PRPH lesions were severely impaired on 3 amnesia-sensitive tasks: delayed nonmatching to sample, object retention, and 8-pair concurrent discrimination. On pattern discrimination, a task analogous to ones that amnesic patients perform well, monkeys in the PRPH group performed normally. Overall, monkeys with PRPH lesions were as impaired or more impaired than the comparison group of monkeys with H+A+ lesions. These and other recent findings (Zola-Morgan et al., 1989b) suggest that the severe memory impairment in monkeys and humans associated with bilateral medial temporal lesions results from damage to the hippocampal formation and adjacent, anatomically related cortex, not from conjoint hippocampus-amygdala damage.

Back to top

In this issue

The Journal of Neuroscience: 9 (12)
Journal of Neuroscience
Vol. 9, Issue 12
1 Dec 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment
S Zola-Morgan, LR Squire, DG Amaral, WA Suzuki
Journal of Neuroscience 1 December 1989, 9 (12) 4355-4370; DOI: 10.1523/JNEUROSCI.09-12-04355.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment
S Zola-Morgan, LR Squire, DG Amaral, WA Suzuki
Journal of Neuroscience 1 December 1989, 9 (12) 4355-4370; DOI: 10.1523/JNEUROSCI.09-12-04355.1989
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.