Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Gaze-dependent visual neurons in area V3A of monkey prestriate cortex

C Galletti and PP Battaglini
Journal of Neuroscience 1 April 1989, 9 (4) 1112-1125; https://doi.org/10.1523/JNEUROSCI.09-04-01112.1989
C Galletti
Cattedra di Fisiologia generale della Facolta di Farmacia, Istituto di Fisiologia umana, Universita di Bologna, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PP Battaglini
Cattedra di Fisiologia generale della Facolta di Farmacia, Istituto di Fisiologia umana, Universita di Bologna, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Extracellular recordings from single neurons of the prestriate area V3A were carried out in awake, behaving monkeys, to test the influence of the direction of gaze on cellular activity. The responsiveness to visual stimulation of about half of the studied neurons (88/187) was influenced by the animal's direction of gaze: physically identical visual stimuli delivered to identical retinotopic positions (on the receptive field) evoked different responses, depending upon the direction of gaze. Control experiments discount the possibility that the observed phenomenon was due to changes in visual background or in depth, depending on the direction in which the animal was looking. The gaze effect modulated cell excitability with different strengths for different gaze directions. The majority of these neurons were more responsive when the animal looked contralaterally with respect to the hemisphere they were recorded from. Gaze-dependent neurons seem to be segregated in restricted cortical regions, within area V3A, without mixing with non-gaze-dependent cells of the same cortical area. The most reliable differences between V3A gaze-dependent neurons and the same type of cells previously described in area 7a (Andersen and Mountcastle, 1983) concern the small receptive field size, the laterality of gaze effect, and the lack of straight-ahead facilitated or inhibited neurons in area V3A. Since the present results show that V3A gaze-dependent neurons combine information about the position of the eye in the orbit with that of a restricted retinal locus (their receptive field), we suggest that they might directly encode spatial locations of the animal's field of view in a head frame of reference. These cells might be involved in the construction of an internal map of the visual environment in which the topographical position of the objects reflects their objective position in space instead of reflecting the retinotopic position of their images. Such an objective map of the visual world might allow the stability of visual perception despite eye movement.

Back to top

In this issue

The Journal of Neuroscience: 9 (4)
Journal of Neuroscience
Vol. 9, Issue 4
1 Apr 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Gaze-dependent visual neurons in area V3A of monkey prestriate cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Gaze-dependent visual neurons in area V3A of monkey prestriate cortex
C Galletti, PP Battaglini
Journal of Neuroscience 1 April 1989, 9 (4) 1112-1125; DOI: 10.1523/JNEUROSCI.09-04-01112.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Gaze-dependent visual neurons in area V3A of monkey prestriate cortex
C Galletti, PP Battaglini
Journal of Neuroscience 1 April 1989, 9 (4) 1112-1125; DOI: 10.1523/JNEUROSCI.09-04-01112.1989
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.