Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Developmental expression of reactivity to monoclonal antibodies generated against olfactory epithelia

VM Carr, AI Farbman, MS Lidow, LM Colletti, JL Hempstead and JI Morgan
Journal of Neuroscience 1 April 1989, 9 (4) 1179-1198; https://doi.org/10.1523/JNEUROSCI.09-04-01179.1989
VM Carr
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AI Farbman
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MS Lidow
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LM Colletti
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JL Hempstead
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JI Morgan
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The developmental expression of immunocytochemical reactivity to 3 monoclonal antibodies (Mabs Neu 4, Neu 5, and Neu 9) that were generated against adult rat olfactory epithelium was examined in olfactory tissues of embryonic rats. Tissues examined included the nasal olfactory epithelium, nerve, and olfactory bulb, as well as vomeronasal epithelium and nerve. Reactivity patterns of these Mabs in adult rats have been described previously (Hempstead and Morgan, 1985a). All 3 Mabs show reactivity on the cell surfaces of neurons, axons, and dendrites of the olfactory epithelium proper. Neu 5 alone shows reactivity on the dendritic knobs, site of transduction of the olfactory stimuli. These reactivities appear early, suggesting developmentally significant roles for the antigens to these Mabs. For Neu 5 and Neu 9 initial reactivity occurs on outgrowing olfactory axons at E13. Dendritic and perikaryal reactivities begin appearing at E14. For Neu 4 initial reactivity occurs simultaneously on olfactory neuronal perikarya, axons, and dendrites at E14. Reactivity also occurs on cells that migrate from the olfactory epithelium and are associated with the olfactory nerves. Within the developing olfactory bulb, Neu 5 behaves as a general cell-surface marker. Neu 4 and Neu 9, however, show enhanced reactivity in the glomerular layer after the onset of synaptogenesis. Reactivity is also seen in the nasal respiratory epithelium and in the vomeronasal epithelia and nerve. Neu 5 and several antibodies to rat neural cell adhesion molecules (N-CAMs) show similar, although not identical, immunohistochemical staining patterns. They also react with the same bands in Western blots of brain membrane preparations. Western blots of Neu 5-reactive material also show developmental and spatial correlations of apparent molecular-weight distributions expected of N-CAM-like components as well.

Back to top

In this issue

The Journal of Neuroscience: 9 (4)
Journal of Neuroscience
Vol. 9, Issue 4
1 Apr 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Developmental expression of reactivity to monoclonal antibodies generated against olfactory epithelia
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Developmental expression of reactivity to monoclonal antibodies generated against olfactory epithelia
VM Carr, AI Farbman, MS Lidow, LM Colletti, JL Hempstead, JI Morgan
Journal of Neuroscience 1 April 1989, 9 (4) 1179-1198; DOI: 10.1523/JNEUROSCI.09-04-01179.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Developmental expression of reactivity to monoclonal antibodies generated against olfactory epithelia
VM Carr, AI Farbman, MS Lidow, LM Colletti, JL Hempstead, JI Morgan
Journal of Neuroscience 1 April 1989, 9 (4) 1179-1198; DOI: 10.1523/JNEUROSCI.09-04-01179.1989
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.