Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia

CH Bailey and M Chen
Journal of Neuroscience 1 May 1989, 9 (5) 1774-1780; https://doi.org/10.1523/JNEUROSCI.09-05-01774.1989
CH Bailey
Department of Anatomy, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Chen
Department of Anatomy, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have used the gill- and siphon-withdrawal reflex of Aplysia californica to explore the morphological basis of the synaptic plasticity that underlies long-term sensitization. In earlier studies (Bailey and Chen, 1983, 1988a), we described 2 classes of structural changes at identified sensory neuron synapses that occur following long- term sensitization: (1) increases in the number, size, and vesicle complement of active zones and (2) an overall increase in the total number of synaptic varicosities per sensory neuron. In the present study, we have begun to examine which of these anatomical changes might be necessary for the maintenance of long-term sensitization by exploring the time course over which they occur and, in particular, their duration relative to the persistence of the memory assessed behaviorally. Toward this end we have quantitated changes in both the total number of varicosities and their active zone morphology in single HRP-labeled sensory neurons taken from long-term sensitized and control animals at different intervals (1–2 d, 1 week, and 3 weeks) following training. We have found that long-term sensitized animals examined within 48 hr after the completion of training demonstrate an increase in the total number of varicosities per sensory neuron as well as an increase in the incidence, size, and vesicle complement of their synaptic active zones compared with control animals. The increase in the number of varicosities and active zones persists unchanged for at least 1 week, and the increase in active zone number is only partially reversed at the end of 3 weeks.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 9 (5)
Journal of Neuroscience
Vol. 9, Issue 5
1 May 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia
CH Bailey, M Chen
Journal of Neuroscience 1 May 1989, 9 (5) 1774-1780; DOI: 10.1523/JNEUROSCI.09-05-01774.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia
CH Bailey, M Chen
Journal of Neuroscience 1 May 1989, 9 (5) 1774-1780; DOI: 10.1523/JNEUROSCI.09-05-01774.1989
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.