Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle

MM Rich and JW Lichtman
Journal of Neuroscience 1 May 1989, 9 (5) 1781-1805; DOI: https://doi.org/10.1523/JNEUROSCI.09-05-01781.1989
MM Rich
Department of Anatomy, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JW Lichtman
Department of Anatomy, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Using a vital nerve terminal dye (4-Di-2-ASP) and fluorescently tagged alpha-bungarotoxin to stain postsynaptic acetylcholine (ACh) receptors, we viewed the same muscle fibers at multiple times in the sternomastoid muscle of living mice during the process of reinnervation following nerve crush. Soon after axons reenter the muscle, they precisely reoccupy the original endplate sites. However, in contrast to normal adult muscle, during the first several weeks of reinnervation, anatomical and physiological measures show that many of the endplate sites are innervated by more than one axon. Typically, one axon reinnervates the original endplate site by growing up the old Schwann cell tube while another originates as a sprout from a nearby endplate. Within 2 weeks after reinnervation nerve terminal staining shows that most of the sprouts have regressed and physiological evidence of multiple innervation has returned to the normal low level. By repeatedly observing the same endplates during the period of synapse elimination, we could directly view this phenomenon. At some endplates, nerve terminal boutons in one region of the endplate were eliminated at the same time a sprout entering that area regressed. These unoccupied sites seemed permanently eliminated as they are not subsequently occupied by sprouts from the axon remaining at the endplate. We were surprised to find that there is a corresponding permanent loss of ACh receptors within the muscle fiber membrane precisely underneath the eliminated nerve terminals. The decrease in receptors at sites of synapse elimination is due to both a selective loss of ACh receptors already incorporated into these sites and to a lack of insertion of new receptors at the same regions. These sites of pre- and postsynaptic loss, however, maintain cholinesterase staining in the basal lamina for long periods. Control experiments showed that endplates that were permanently denervated, incompletely reoccupied by reinnervating axons, or stained and viewed multiple times in normal muscle do not lose postsynaptic receptor regions. Interestingly, receptors appear to be eliminated before there is any obvious change in the staining of the overlying nerve terminal. Because of the lag between receptor and nerve terminal loss, we could predict which synaptic boutons would be eliminated by looking for lightly stained receptor regions. One interpretation of these data is that the removal or redistribution of relevant postsynaptic molecules by one innervating axon may instigate the elimination of competing terminals.

Back to top

In this issue

The Journal of Neuroscience: 9 (5)
Journal of Neuroscience
Vol. 9, Issue 5
1 May 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle
MM Rich, JW Lichtman
Journal of Neuroscience 1 May 1989, 9 (5) 1781-1805; DOI: 10.1523/JNEUROSCI.09-05-01781.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle
MM Rich, JW Lichtman
Journal of Neuroscience 1 May 1989, 9 (5) 1781-1805; DOI: 10.1523/JNEUROSCI.09-05-01781.1989
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.