Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

A comparison of movement direction-related versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task

JF Kalaska, DA Cohen, ML Hyde and M Prud'homme
Journal of Neuroscience 1 June 1989, 9 (6) 2080-2102; https://doi.org/10.1523/JNEUROSCI.09-06-02080.1989
JF Kalaska
Departemente de physiologie, Faculte de medecine, Universite de Montreal, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DA Cohen
Departemente de physiologie, Faculte de medecine, Universite de Montreal, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ML Hyde
Departemente de physiologie, Faculte de medecine, Universite de Montreal, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Prud'homme
Departemente de physiologie, Faculte de medecine, Universite de Montreal, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Shoulder joint-related motor cortex cells show continuously graded changes in activity, centered on a preferred movement direction, during active arm movements in 8 directions away from a central starting position (Georgopoulos et al., 1982). We demonstrate here that many of these cells show similar large continuously graded changes in discharge when the monkey compensates for inertial loads which pull the arm in 8 different directions. These load-dependent discharge variations are typically unimodal, centered on one load direction called the cell's load axis, and are often sufficiently continuous, symmetric, and broad as to show a good fit to a sinusoidal curve. A vectorial representation of cell activity indicates that the pattern of load-dependent activity changes in the population forms a signal whose direction is appropriate to compensate for the loads. The responses of single cells to different combinations of movement and load direction are often complex. Nevertheless, the mean activity of the sample population under any condition of movement direction and load direction can be described reasonably well by a simple linear summation of the movement-related discharge without any loads, and the change in tonic activity of the population caused by the load, measured prior to movement. The strength of the load-dependent discharge variation differs among cells. Cells can be sorted into 2 phasic and 2 tonic groups that show differing degrees of sensitivity to loads. In particular, it was found that the greater the degree of cell discharge variation associated with different actively maintained limb postures, the greater the activity changes caused by loads. No similar correlation was found for the degree of discharge variation during movement. Preliminary evidence suggests that phasic and tonic cell groups may be spatially segregated in the motor cortex. These observations are consistent with the idea that there exists in the motor cortex activity encoding aspects of movement kinematics, as well as movement dynamics. These observations are in agreement with studies of more distal arm joints, showing that the activity of certain motor cortex cells varies with the patterns of muscle activity and output forces required to produce a movement. These experiments extend the description of the control of the direction of movement of a multiple degree-of-freedom joint into the spatial (direction) domain to a greater extent than previously achieved.

Back to top

In this issue

The Journal of Neuroscience: 9 (6)
Journal of Neuroscience
Vol. 9, Issue 6
1 Jun 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A comparison of movement direction-related versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A comparison of movement direction-related versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task
JF Kalaska, DA Cohen, ML Hyde, M Prud'homme
Journal of Neuroscience 1 June 1989, 9 (6) 2080-2102; DOI: 10.1523/JNEUROSCI.09-06-02080.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A comparison of movement direction-related versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task
JF Kalaska, DA Cohen, ML Hyde, M Prud'homme
Journal of Neuroscience 1 June 1989, 9 (6) 2080-2102; DOI: 10.1523/JNEUROSCI.09-06-02080.1989
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.