Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex

S Koh and R Loy
Journal of Neuroscience 1 September 1989, 9 (9) 2999-3018; https://doi.org/10.1523/JNEUROSCI.09-09-02999.1989
S Koh
Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Loy
Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In order to understand further the role of NGF in the development of NGF-sensitive basal forebrain neurons and their afferent connections to the hippocampus and neocortex, we have used monoclonal antibody 192 IgG to detect and localize NGF receptors immunocytochemically in the developing rat brain. NGF receptor immunoreactivity (NGF-RI) is first visible at embryonic day 13 (E 13) in the ventrolateral telencephalic wall and follows a caudal-to-rostral gradient in its initial appearance. NGF-RI neuronal number and neuropil staining undergo substantial increases before birth, and extensive dendritic growth and increases in perikaryal size continue during the first 3 weeks of postnatal life. This growth and cellular differentiation, however, is followed in the fourth postnatal week and later by an apparent decrease in dendritic arborization and 50% shrinkage in the size of perikarya. Initial NGF-RI fiber outgrowth from immature basal forebrain neurons directed toward appropriate target fields is observed as early as E 15. The formation of a laminar pattern by septal axons in the hippocampal terminal fields and invasion of NB afferents into the cortex occur postnatally over a protracted time. In the hippocampus, NGF-RI is initially diffusely distributed, and wide bands of immature granule and pyramidal cells are almost devoid of immunoreactive fibers; however, with maturity, septal axon terminals become concentrated in narrow zones closely associated with the cellular layers. In the neocortex, early-arriving basal forebrain afferents accumulate in the intermediate zone underneath the darkly immunoreactive subplate before they enter The cortex. Dense subplate and transiently present, radially aligned fiber staining completely disappear in later postnatal week and are gradually replaced by specific axonal and terminal staining associated with NB afferents. The expression of NGF receptor in the subplate zone at the time afferents arrive and its subsequent disappearance with the specific terminal formation suggest that NGF receptor and concomitant accumulation of NGF in the subplate may act as a temporary target for the early-arriving basal forebrain afferents; ingrowing afferents may then be guided by radially oriented NGF-RI fibers to proper synaptic sites.

Back to top

In this issue

The Journal of Neuroscience: 9 (9)
Journal of Neuroscience
Vol. 9, Issue 9
1 Sep 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex
S Koh, R Loy
Journal of Neuroscience 1 September 1989, 9 (9) 2999-3018; DOI: 10.1523/JNEUROSCI.09-09-02999.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex
S Koh, R Loy
Journal of Neuroscience 1 September 1989, 9 (9) 2999-3018; DOI: 10.1523/JNEUROSCI.09-09-02999.1989
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.