Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Visuomotor adaptation to displacing prisms by adult and baby barn owls

EI Knudsen and PF Knudsen
Journal of Neuroscience 1 September 1989, 9 (9) 3297-3305; https://doi.org/10.1523/JNEUROSCI.09-09-03297.1989
EI Knudsen
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PF Knudsen
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The capacity of barn owls to adapt visuomotor behavior in response to prism-induced displacement of the visual field was tested in babies and adults. Matched, binocular Fresnel prisms, which displaced the visual field 11 degrees, 23 degrees, or 34 degrees to the right, were placed on owls for periods of up to 99 d. Seven baby owls wore the prisms from the day the eyelids first opened; 2 owls wore them as adults. Prism adaptation was measured by the accuracy with which a target was approached and struck with the talons, a behavior similar to pointing behavior used commonly to assess prism adaptation in primates. Baby and adult owls exhibited a limited capacity to adapt this visuomotor behavior. Acquisition of adapted behavior was slow, taking place over a period of weeks, and was never complete even for owls that were raised viewing the world through relatively weak (11 degrees) displacing prisms. When the prisms were removed from adapted owls, they struck to the opposite side of the target. The recovery of strike accuracy following prism removal was rapid; 7 of 9 owls recovered normal accuracy within 30 min of prism removal, despite having worn the prisms for months. This limited capacity for adaptation contrasts dramatically with the extensive and rapid adaptation exhibited by adult primates exposed to comparable prismatic displacements. The mechanism of adaptation used by the owls was to alter the movements employed for approaching targets. Instead of moving straight ahead, the head and body moved diagonally relative to the orientation of the head. Thus, in contrast to prism adaptation by humans that can involve reinterpretation of eye, head, and limb position, prism adaptation by owls is based on changes in the motor commands that underlie approach behavior.

Back to top

In this issue

The Journal of Neuroscience: 9 (9)
Journal of Neuroscience
Vol. 9, Issue 9
1 Sep 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Visuomotor adaptation to displacing prisms by adult and baby barn owls
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Visuomotor adaptation to displacing prisms by adult and baby barn owls
EI Knudsen, PF Knudsen
Journal of Neuroscience 1 September 1989, 9 (9) 3297-3305; DOI: 10.1523/JNEUROSCI.09-09-03297.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Visuomotor adaptation to displacing prisms by adult and baby barn owls
EI Knudsen, PF Knudsen
Journal of Neuroscience 1 September 1989, 9 (9) 3297-3305; DOI: 10.1523/JNEUROSCI.09-09-03297.1989
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.