Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Vision calibrates sound localization in developing barn owls

EI Knudsen and PF Knudsen
Journal of Neuroscience 1 September 1989, 9 (9) 3306-3313; https://doi.org/10.1523/JNEUROSCI.09-09-03306.1989
EI Knudsen
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PF Knudsen
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study demonstrates that continuous exposure of baby barn owls to a displaced visual field causes a shift in sound localization in the direction of the visual displacement. This implies an innate dominance of vision over audition in the development and maintenance of sound localization. Twelve owls were raised from the first day of eye opening wearing binocular prisms that displaced the visual field to the right by 11 degrees, 23 degrees, or 34 degrees. The prisms were worn for periods of up to 7 months. Consistent with previous results (Knudsen and Knudsen, 1989a), owls reared with displacing prisms did not adjust head orientation to visual stimuli. While wearing prisms, owls consistently oriented the head to the right of visual targets, and, as soon as the prisms were removed, they oriented the head directly at visual targets, as do normal owls. In contrast, prism-reared owls did change head orientation to sound sources even though auditory cues were not altered significantly. Birds reared wearing 11 degrees or 23 degrees prisms oriented the head to the right of acoustic targets by an amount approximately equal to the optical displacement induced by the prisms. Birds raised wearing 34 degrees prisms adjusted sound localization by only about 50% of the optical displacement. Thus, visually guided adjustment of sound localization appears to be limited to about 20 degrees in azimuth. The data indicate that when confronted with consistently discordant localization information from the auditory and visual systems, developing owls use vision to calibrate associations of auditory localization cues with locations in space in an attempt to bring into alignment the perceived locations of auditory and visual stimuli emanating from a common source. Vision exerts this instructive influence on sound localization whether or not visual information is accurate.

Back to top

In this issue

The Journal of Neuroscience: 9 (9)
Journal of Neuroscience
Vol. 9, Issue 9
1 Sep 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Vision calibrates sound localization in developing barn owls
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Vision calibrates sound localization in developing barn owls
EI Knudsen, PF Knudsen
Journal of Neuroscience 1 September 1989, 9 (9) 3306-3313; DOI: 10.1523/JNEUROSCI.09-09-03306.1989

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Vision calibrates sound localization in developing barn owls
EI Knudsen, PF Knudsen
Journal of Neuroscience 1 September 1989, 9 (9) 3306-3313; DOI: 10.1523/JNEUROSCI.09-09-03306.1989
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.