Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Neural classifiers with limited connectivity and recurrent readouts

Lyudmila Kushnir and Stefano Fusi
Journal of Neuroscience 24 September 2018, 3506-17; https://doi.org/10.1523/JNEUROSCI.3506-17.2018
Lyudmila Kushnir
1GNT - LNC, Departement d'etudes cognitives, Ecole normale superieure, INSERM, PSL Research University, 75005 Paris, France
2Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefano Fusi
2Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University
3Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
4Kavli Institute for Brain Sciences, Columbia University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

For many neural network models in which neurons are trained to classify inputs like perceptrons, the number of inputs that can be classified is limited by the connectivity of each neuron, even when the total number of neurons is very large. This poses the problem of how the biological brain can take advantage of its huge number of neurons given that the connectivity is sparse. One solution is to combine multiple perceptrons together, as in committee machines. The number of classifiable random patterns would then grow linearly with the number of perceptrons, even when each perceptron has limited connectivity. However, the problem is moved to the downstream readout neurons, which would need a number of connections that is as large as the number of perceptrons. Here we propose a different approach in which the readout is implemented by connecting multiple perceptrons in a recurrent attractor neural network. We prove analytically that the number of classifiable random patterns can grow unboundedly with the number of perceptrons, even when the connectivity of each perceptron remains finite. Most importantly, both the recurrent connectivity and the connectivity of downstream readouts also remain finite. Our study shows that feed-forward neural classifiers with numerous long range afferent connections can be replaced by recurrent networks with sparse long range connectivity without sacrificing the classification performance. Our strategy could be used to design more general scalable network architectures with limited connectivity, which resemble more closely the brain neural circuits which are dominated by recurrent connectivity.

Significance statement

The mammalian brain has a huge number of neurons but the connectivity is rather sparse. This observation seems to contrast with the theoretical studies showing that for many neural network models the performance scales with the number of connections per neuron and not with the total number of neurons. To solve this dilemma, we propose a model in which a recurrent network reads out multiple neural classifiers. Its performance scales with the total number of neurons even when each neuron of the network has limited connectivity. Our study reveals an important role of recurrent connections in neural systems like the hippocampus, in which the computational limitations due to sparse long range feed-forward connectivity might be compensated by local recurrent connections.

Footnotes

  • The authors declare no competing financial interests.

Back to top
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neural classifiers with limited connectivity and recurrent readouts
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Neural classifiers with limited connectivity and recurrent readouts
Lyudmila Kushnir, Stefano Fusi
Journal of Neuroscience 24 September 2018, 3506-17; DOI: 10.1523/JNEUROSCI.3506-17.2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Neural classifiers with limited connectivity and recurrent readouts
Lyudmila Kushnir, Stefano Fusi
Journal of Neuroscience 24 September 2018, 3506-17; DOI: 10.1523/JNEUROSCI.3506-17.2018
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • V2b neurons act via multiple targets to produce in phase inhibition during locomotion
  • Functional and Regional Specificity of Noradrenergic Signaling for Encoding and Retrieval of Associative Recognition Memory in the Rat
  • The Neurobiology of Cognitive Fatigue and Its Influence on Effort-Based Choice
Show more Research Articles

Systems/Circuits

  • V2b neurons act via multiple targets to produce in phase inhibition during locomotion
  • The Neurobiology of Cognitive Fatigue and Its Influence on Effort-Based Choice
  • Specializations in Amygdalar and Hippocampal Innervation of the Primate Nucleus Accumbens Shell
Show more Systems/Circuits
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.