Abstract
Our visual input is constantly changing, but not all moments are equally relevant. Visual temporal attention, the prioritization of visual information at specific points in time, increases perceptual sensitivity at behaviorally relevant times. The dynamic processes underlying this increase are unclear. During fixation, humans make small eye movements called microsaccades, and inhibiting microsaccades improves perception of brief stimuli. Here we asked whether temporal attention changes the pattern of microsaccades in anticipation of brief stimuli. Human observers (female and male) judged stimuli presented within a short sequence. Observers were given either an informative precue to attend to one of the stimuli, which was likely to be probed, or an uninformative (neutral) precue. We found strong microsaccadic inhibition before the stimulus sequence, likely due to its predictable onset. Critically, this anticipatory inhibition was stronger when the first target in the sequence (T1) was precued (task-relevant) than when the precue was uninformative. Moreover, the timing of the last microsaccade before T1 and the first microsaccade after T1 shifted, such that both occurred earlier when T1 was precued than when the precue was uninformative. Finally, the timing of the nearest pre- and post-T1 microsaccades affected task performance. Directing voluntary temporal attention therefore impacts microsaccades, helping to stabilize fixation at the most relevant moments, over and above the effect of predictability. Just as saccading to a relevant stimulus can be an overt correlate of the allocation of spatial attention, precisely timed gaze stabilization can be an overt correlate of the allocation of temporal attention.
SIGNIFICANCE STATEMENT
We pay attention at moments in time when a relevant event is likely to occur. Such temporal attention improves our visual perception, but how it does so is not well understood. Here we discovered a new behavioral correlate of voluntary, or goal-directed, temporal attention. We found that the pattern of small fixational eye movements called microsaccades changes around behaviorally relevant moments in a way that stabilizes the position of the eyes. Microsaccades during a brief visual stimulus can impair perception of that stimulus. Therefore, such fixation stabilization may contribute to the improvement of visual perception at attended times. This link suggests that in addition to cortical areas, subcortical areas mediating eye movements may be recruited with temporal attention.
Footnotes
The authors declare no competing financial interests.
This research was supported by National Institutes of Health National Eye Institute R01 EY019693 and R01 EY016200 to MC, F32 EY025533 to RND, and T32 EY007136 to NYU, as well as by Binational United States/Israel National Science Foundation grant 2015201 to MC and SYG. We thank Stephanie Badde for statistical advice and Omer Solomon for technical assistance.
Jump to comment: