Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Perinatal fentanyl exposure leads to long-lasting impairments in somatosensory circuit function and behavior

Jason B. Alipio, Catherine Haga, Megan E. Fox, Keiko Arakawa, Rakshita Balaji, Nathan Cramer, Mary Kay Lobo and Asaf Keller
Journal of Neuroscience 19 January 2021, JN-RM-2470-20; DOI: https://doi.org/10.1523/JNEUROSCI.2470-20.2020
Jason B. Alipio
Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine Haga
Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megan E. Fox
Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Megan E. Fox
Keiko Arakawa
Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rakshita Balaji
Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan Cramer
Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary Kay Lobo
Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mary Kay Lobo
Asaf Keller
Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Asaf Keller
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

One consequence of the opioid epidemic are lasting neurodevelopmental sequelae afflicting adolescents exposed to opioids in the womb. A translationally relevant and developmentally accurate preclinical model is needed to understand the behavioral, circuit, network, and molecular abnormalities resulting from this exposure. By employing a novel preclinical model of perinatal fentanyl exposure, our data reveal that fentanyl has several dose-dependent, developmental consequences to somatosensory function and behavior. Newborn male and female mice exhibit signs of withdrawal and sensory-related deficits that extend at least to adolescence. As fentanyl exposure does not affect dams’ health or maternal behavior, these effects result from the direct actions of perinatal fentanyl on the pups’ developing brain. At adolescence, exposed mice exhibit reduced adaptation to sensory stimuli, and a corresponding impairment in primary somatosensory (S1) function. In vitro electrophysiology demonstrates a long-lasting reduction in S1 synaptic excitation, evidenced by decreases in release probability, NMDA receptor-mediated postsynaptic currents, and frequency of miniature excitatory postsynaptic currents, as well as increased frequency of miniature inhibitory postsynaptic currents. In contrast, anterior cingulate cortical neurons exhibit an opposite phenotype, with increased synaptic excitation. Consistent with these changes, electrocorticograms reveal suppressed ketamine-evoked γ oscillations. Morphological analysis of S1 pyramidal neurons indicate reduced dendritic complexity, dendritic length, and soma size. Further, exposed mice exhibited abnormal cortical mRNA expression of key receptors and neuronal growth and development, changes that were consistent with the electrophysiological and morphological changes. These findings demonstrate the lasting sequelae of perinatal fentanyl exposure on sensory processing and function.

Significance Statement This is the first study to show that exposure to fentanyl in the womb results in behavioral, circuitry, and synaptic effects that last at least to adolescence. We also show, for the first time, that this exposure has different, lasting effects on synapses in different cortical areas.

Footnotes

  • We thank L. M. Riggs for providing valuable comments on the manuscript. This work was supported by the Opioid Use Disorders Initiative, MPowering The State, from the State of Maryland. Support was provided also by R01 DA038613 to MKL and K99 DA050575 to MEF. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding sources had no role in study design; the collection, analysis and interpretation of data; the writing of the report; or in the decision to submit the article for publication.

SfN exclusive license.

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Perinatal fentanyl exposure leads to long-lasting impairments in somatosensory circuit function and behavior
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Perinatal fentanyl exposure leads to long-lasting impairments in somatosensory circuit function and behavior
Jason B. Alipio, Catherine Haga, Megan E. Fox, Keiko Arakawa, Rakshita Balaji, Nathan Cramer, Mary Kay Lobo, Asaf Keller
Journal of Neuroscience 19 January 2021, JN-RM-2470-20; DOI: 10.1523/JNEUROSCI.2470-20.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Perinatal fentanyl exposure leads to long-lasting impairments in somatosensory circuit function and behavior
Jason B. Alipio, Catherine Haga, Megan E. Fox, Keiko Arakawa, Rakshita Balaji, Nathan Cramer, Mary Kay Lobo, Asaf Keller
Journal of Neuroscience 19 January 2021, JN-RM-2470-20; DOI: 10.1523/JNEUROSCI.2470-20.2020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • The phosphoprotein Synapsin Ia regulates the kinetics of dense-core vesicle release
  • Tuba Activates Cdc42 during Neuronal Polarization Downstream of the Small GTPase Rab8a
  • Frontotemporal Regulation of Subjective Value to Suppress Impulsivity in Intertemporal Choices
Show more Research Articles

Systems/Circuits

  • Neural Population Dynamics Underlying Expected Value Computation
  • Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap
  • Chronic stress prevents cortico-accumbens cue encoding and alters conditioned approach
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.