Neuronal activity in the posterior cingulate cortex signals environmental information and predicts behavioral variability during trapline foraging

https://doi.org/10.1523/JNEUROSCI.0305-20.2020

Cite as: J. Neurosci 2021; 10.1523/JNEUROSCI.0305-20.2020
Received: 6 February 2020
Revised: 2 November 2020
Accepted: 3 December 2020

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Neuronal activity in the posterior cingulate cortex signals environmental

 information and predicts behavioral variability during trapline foragingAbbreviated Title: Posterior cingulate signals behavioral variability

Authors: David L Barack ${ }^{1 *}$ and Michael L Platt ${ }^{2}$
${ }^{1}$ Departments of Philosophy, Neuroscience, and Economics, Columbia University, New York, NY 10027, USA.
${ }^{2}$ Departments of Neuroscience, Psychology, and Marketing, University of Pennsylvania, Philadelphia, PA 19104, USA.

* corresponding author: dbarack@gmail.com

Number of pages: 38
Number of figures: 3
Number of tables: 1
Number of words in abstract: 167
Number of words in significance statement: 120 words
Number of words in introduction: 949
Number of words in discussion: 1220
Conflict of interest: The authors declare no competing financial interests.
Acknowledgements: This work was supported by the National Eye Institute of the National Institutes of Health (R01 EY013496 to M.L.P.) and an Incubator Award from the Duke Institute for Brain Sciences. We thank Jean-François Garièpy for discussions during task development.

We heartily thank Akram Bakkour for assistance with data analysis. Correspondence and requests for materials should be addressed to dbarack@gmail.com, or to the Center for Science and Society, Fayerweather Hall 511, Columbia University, 1180 Amsterdam Ave., New York, NY 10027.

Abstract

Animals engage in routine behavior in order to efficiently navigate their environments. This routine behavior may be influenced by the state of the environment, such as the location and size of rewards. The neural circuits tracking environmental information and how that information impacts decisions to deviate from routines remains unexplored. To investigate the representation of environmental information during routine foraging, we recorded the activity of single neurons in posterior cingulate cortex (PCC) in two male monkeys searching through an array of targets in which the location of rewards was unknown. Outside the laboratory, people and animals solve such traveling salesman problems by following routine traplines that connect nearest-neighbor locations. In our task, monkeys also deployed traplining routines, but as the environment became better known, they deviate from them despite the reduction in foraging efficiency. While foraging, PCC neurons tracked environmental information but not reward and predicted variability in the pattern of choices. Together, these findings suggest that PCC may mediate the influence of information on variability in choice behavior.

Significance statement

Many animals seek information to better guide their decisions and update behavioral routines. In our study, subjects visually searched through a set of targets on every trial to gather two rewards. Greater amounts of information about the distribution of rewards predicted less variability in choice patterns, whereas smaller amounts predicted greater variability. We recorded from the posterior cingulate cortex, an area implicated in the coding of reward and uncertainty, and discovered that these neurons signaled the expected information about the distribution of rewards instead of signaling expected rewards. The activity in these cells also predicted the amount of variability in choice behavior. These findings suggest that the posterior cingulate helps direct the search for information in order to augment routines.

Introduction

Imagine you are at a horse race, and there are six horses, with Local Field Potential the underdog, facing 100:1 odds against. When LFP wins, a one dollar bet will pay out $\$ 100$. But in addition to the reward received from this bet, learning that out of the six horses, LFP is the winner reduces your uncertainty about the outcome. Hence, LFP crossing the finish line first yields both reward and information.

Similar problems are often faced by organisms in their environment. Animals are adept at learning not only the sizes of rewards but also their locations, timing, or other properties. For example, hummingbirds will adapt their nectar foraging in response to unexpected changes in reward timing (Garrison and Gass 1999). Similarly, monkeys will adapt their foraging routines upon receiving information that a highly valued resource has become available (Menzel 1991). In general, animals can make better decisions by tracking such reward information. Perhaps once
a reward has been received, it no longer pays to wait for more because the resource is exhausted or the time between rewards is too great (McNamara 1982), as occurs for some foraging animals. Or, perhaps receiving a reward also resolves any remaining uncertainty about an environment (Stephens and Krebs 1986). Keeping track of reward information independent of reward size thus serves as an important input into animals' decision processes.

We designed an experiment to probe this oft-neglected informational aspect of rewardbased decision making. Our experiment is based on the behavior of animals that exploit renewable resources by following an efficient foraging path, a strategy known as traplining (Freeman 1968, Berger-Tal and Bar-David 2015). Trapline foraging has a number of benefits, including reducing the variance of a harvest and thereby attenuating risk (Possingham 1989), efficiently capitalizing on periodically renewing resources (Possingham 1989, Bell 1990, Ohashi, Leslie et al. 2008), and helping adapt to changes in competition (Ohashi, Leslie et al. 2013). Many animals trapline, including bats (Racey and Swift 1985), bees (Manning 1956, Janzen 1971), butterflies (Boggs, Smiley et al. 1981), hummingbirds (Gill 1988), and an array of primates including rhesus macaques (Menzel 1973), baboons (Noser and Byrne 2010), vervet monkeys (Cramer and Gallistel 1997), and humans (Hui, Fader et al. 2009). Wild primates foraging for fruit (Menzel 1973, Noser and Byrne 2010), captive primates searching for hidden foods (Gallistel and Cramer 1996, Desrochers, Jin et al. 2010), and humans moving through simulated (MacGregor and Chu 2011) and real (Hui, Fader et al. 2009) environments all use traplining to minimize total distance traveled and thereby maximize resource intake rates.

Though many primates trapline, information about the state of the environment, such as weather(Janmaat, Byrne et al. 2006), the availability of new foods(Menzel 1991), or possible
feeding locations(Hemmi and Menzel 1995, Menzel 1996), can influence choices made while foraging. Such detours result in longer search distances and more variable choices(Hui, Fader et al. 2009, Noser and Byrne 2010) but allow animals to identify new resources(Menzel 1991) and engage in novel behaviors(Noser and Byrne 2010). These benefits are consistent with computer simulations that show traplining with variation in routes yields better long-term returns than traplining without variation by uncovering new resources or more efficient routes (Ohashi and Thomson 2005). In this way, environmental information may improve foraging efficiency during routine foraging over the longer term.

The neural mechanisms that track, update, and regulate the impact of environmental information on decision making remain unknown. Neuroimaging studies have revealed that the posterior cingulate cortex (PCC) is activated by a wide range of cognitive phenomena that involve rewards, including prospection(Benoit, Gilbert et al. 2011), value representation(Kable and Glimcher 2007, Clithero and Rangel 2014), strategy setting(Wan, Cheng et al. 2015), and cognitive control(Leech, Kamourieh et al. 2011). Intracranial recordings in monkeys have found that PCC neurons signal reinforcement learning strategies(Pearson, Hayden et al. 2009), respond to novel stimuli during conditional visuomotor learning(Heilbronner and Platt 2013), represent value(McCoy, Crowley et al. 2003), risk(McCoy and Platt 2005), and task switches (Hayden and Platt 2010), and stimulation there can induce shifts away from a default option (Hayden, Nair et al. 2008). Together, these observations suggest that the PCC mediates the effect of environmental information on variability in routine behavior. However, no studies to date have attempted to disentangle hedonic value from the informational value of rewards in PCC.

Previously, we reported that in our traplining task neurons in PCC increased their firing rates during choices prior to decisions to diverge from the typical trapline, the most common circular pattern of choices (Barack, Chang et al. 2017). We reported decisions to diverge from typical traplines were driven by the salience of the pattern of total rewards during foraging. PCC neuron firing rates predicted decisions to diverge from typical traplines and signaled the interaction between foraging decision salience, reward, and time. Finally, these cells displayed a large transient increase in activity prior to decisions to diverge that was especially marked in low reward rate environments.

Here, we explore how information influenced decisions to deviate from traplines (circular patterns of choices) and test the hypothesis that PCC tracks reward information. We recorded the activity of PCC neurons in monkeys foraging through an array of targets in which environmental information, operationalized as the pattern of rewards, was partially decorrelated from reward size. Monkeys developed traplines in which they moved directly between nearest neighbor targets in a circle. When they expected more information about the state of the environment, their trapline foraging behavior was less variable. While foraging, PCC neurons tracked environmental information but not reward and forecast variability in choice patterns. These findings support our hypothesis that PCC mediates the use of information about the state of the environment to regulate adherence to routines in behavior and cognition.

Materials and Methods

Task Analysis

Our experiment required monkeys to select each target in a set of six targets to harvest the rewards. In every trial in our experiment, two fixed rewards (large and small) were assigned to one of six locations in the environment in a pseudorandom fashion (Fig. 1B). Trials began with monkeys fixating a central cross for a variable amount of time, ranging from $0.5-1 \mathrm{sec}$. After fixation offset, six targets arranged in a circle appeared. The same locations were used from trial to trial, and monkeys were free to select the targets in any order. To make a choice, monkeys had to fixate their gaze on a target for 250 ms . In order to advance to the next trial, monkeys had to choose each option, even after they'd already harvested the reward available on that trial. Assuming the cost of making a saccade is a monotonic, positive-definite function of distance between targets, the most efficient solution to our task is to minimize saccade times between targets by searching in a circular pattern. This is referred to as a trapline, and sequences of choices that are non-circular are deviations from traplines.

Uncertainty about the current trial's pattern of received rewards is reduced over the course of the trial as the monkey proceeds through all of the targets. This reduction in uncertainty is quantifiable by examining how many possible patterns of rewards are excluded given the rewards revealed by previous choices. For a subset of patterns, the very same information outcome can be delivered by distinct rewards, serving to partially decorrelate and hence de-confound reward and information outcomes. Furthermore, expected reward and expected information, defined as the average amount of information contained in the next outcome given the pattern of rewards received so far, are also partially decorrelated (Table 1).

Given a set of six rewards (four zero, one small, and one large), there are 6 ! distinct permutations. We made the simplifying assumption that monkeys did not distinguish between

Table 1: Equations for expected reward, entropy, information, and expected information for the reward sequence.

Pattern \#	Permutation P	Expected Reward $E R_{i}=\frac{1}{n} \sum_{i}^{n} R_{i}$	Entropy $H_{i}=-\log _{2} \frac{\left(\left\|\left\{P_{i}\right\}\right\|\right)}{(\|P\|)}$	Information $I_{i}=H_{i}-H_{i-1}$	Expected Information $\boldsymbol{E} \boldsymbol{I}_{i}=\frac{\sum_{\boldsymbol{P}_{\text {remaining }} I_{i}}}{\left(\left\|P_{\text {remaining }}\right\|\right)}$
1	000012	$\begin{array}{llllllllllllllllll}0.5 & 0.6 & 0.75 & 1.0 & 1.5 & 2.0\end{array}$	0.58501 .32193 .32193 .90694 .90694 .9069	0.58500 .737011 .585010	1.25160 .737011 .585010
2	000021	$\begin{array}{lllllllllllllllll}0.5 & 0.6 & 0.75 & 1.0 & 1.5 & 1.0\end{array}$	0.58501 .32193 .32193 .90694 .90694 .9069	0.58500 .737011 .585010	1.25160 .737011 .585010
3	000102	$\begin{array}{llllllllllllllll}0.5 & 0.6 & 0.75 & 1.0 & 1.0 & 2.0\end{array}$	0.58501 .32193 .32193 .90694 .90694 .9069	0.58500 .737011 .585010	1.25160 .737011 .585010
\vdots	!	.	\vdots	!	!
30	210000	0.50 .20000000	2.58504 .90694 .90694 .90694 .90694 .9069	2.58502 .321900000	1.25162 .3219000000

155 Each column in the table (except for the leftmost) contains six columns, each corresponding to a choice number during the trial

156
Total number of choices on every trial $=6 . \operatorname{Key}:|\cdot|=$ cardinality of $\cdot ; R=$ reward $; n=$ choice number; $i=$ choice number in trial.

Different patterns correspond to different series of received reward. The environmental entropy H_{E} contained in receiving some reward (zero, small, or large) depends on the choice number i in the sequence and the total number of possible sequences:

$$
H_{E}=-\log _{2} \frac{\left(\left|\left\{P_{i}\right\}\right|\right)}{(|P|)}
$$

where $|\cdot|$ denotes cardinality, P is the set of possible permutations, and $\left\{P_{i}\right\}$ is the set of remaining permutations after the $i^{\text {th }}$ choice. The amount of information contained in some reward outcome is computed as the difference in the entropy, what has been learned about the current trial's pattern of received reward by receiving the most recent outcome:

$$
\Delta H_{E}=H_{i}-H_{i-1}
$$

for the amount of environmental entropy H_{E} on the $i^{\text {th }}$ outcome. Expected information can then be computed as the mean amount of information to be gained by making the next choice, the weighted average over all possible next information outcomes given the pattern of rewards received:

$$
E\left[\Delta H_{E}\right]_{i}=\frac{\sum_{P_{\text {remaining }}}\left[\Delta H_{E}\right]_{i}}{\left(\left|P_{\text {remaining }}\right|\right)}
$$

for expected information $E\left[\Delta H_{E}\right]$ for the $i^{\text {th }}$ choice, possible outcomes $\left[\Delta H_{E}\right]_{i}$ for the remaining permutations $P_{\text {remaining, }}$, and where $|\cdot|$ again denotes cardinality. As the animal proceeds through the trial, the amount of expected information varies as a function of how many possible patterns of returns have been eliminated so far. Expected reward $E R$ is computed simply as the amount of remaining reward to be harvested on trial i divided by the number of remaining targets n :

$$
E R_{i}=\frac{1}{n} \sum_{i}^{n} R_{i}
$$

If the animal harvests all of the reward near the beginning of a trial, the expected reward will be zero. However, if the animal does not harvest the rewards until the end of a trial, the expected reward will increase across the duration of the trial.

The linear correlation coefficients between the different task variables (information, expected information, reward, expected reward, etc.) can be computed empirically from the total experienced reward outcomes and information outcomes, and from the total experienced reward expectations and information expectations, derived from the trials the monkeys actually experienced. For the anticipation epoch, this includes expected information and expected reward $\left(R^{2}=0.1324\right)$, expected information and previous choice information outcome $\left(R^{2}=0.0292\right)$, expected information and previous choice reward outcome $\left(R^{2}=0.1348\right)$, expected reward and previous choice information outcome $\left(R^{2}=2.6458 \times 10^{-06}\right)$, expected reward and previous choice reward outcomes $\left(R^{2}=0.1082\right)$, previous choice information outcome and previous choice reward outcome $\left(R^{2}=0.5971\right)$. For the outcome epoch, this includes current choice information outcome and current choice reward outcome $\left(R^{2}=0.3935\right)$.

Experimental Design and Statistical Analysis: Behavior
In our experiments, two male rhesus macaques performed the task described above on custom software using psychtoolbox \{Brainard\} and MATLAB (Mathworks, Natick, MA). All statistical comparisons were performed using custom software in MATLAB. Significance was Bonferroni corrected for multiple comparisons, and significance assessed at $\mathrm{p}<0.05$.

For our behavioral entropy measures, we again used the standard definition of entropy. Step size was defined as the number of positions clockwise or counter-clockwise of the target
that the monkey chose in relation to the previous choice's target. For behavioral entropy, the probability of a particular step size was computed for each step size by counting the number of trials with that step size and dividing by the total number of trials. Action step sizes (from -2 to 3) and action step size probabilities (probability of taking an action of a given size) were calculated for choices 1 to 2,2 to 3,3 to 4 , and 4 to 5 (5 to 6 had a constant update of 1). Step sizes were calculated on each choice by determining how many targets around clockwise (positive) or counterclockwise (negative) the next choice was from the previous choice; already selected targets were not included in this calculation. Step size probabilities were calculated by holding fixed all of the covariates for a particular choice (information outcome from previous choice, information expectation for next choice, reward outcome from previous choice, reward expectation for next choice, and choice number) and counting the frequencies for each step size and dividing by the total number of trials with that set of covariates. For each unique combination of covariates (choice number, information outcome, information expectation, reward outcome, and reward expectation), we computed the choicewise behavioral entropy $\left(H_{B}\right)$ for that combination as

$$
H_{B}=-\sum_{s} p_{s} \log _{2} p_{s}
$$

for probability of each step size p_{s}. Finally, a multilinear regression correlated these behavioral entropy scores with the covariates.

To analyze neural coding of expectations, we had to remove diverge choices, defined as choices that diverged from the daily dominant pattern. Determining the daily dominant pattern relied on assessing the similarity between pairs of trials, for every possible pair on a given day,
by computing the pair's Hamming score(Hamming 1950). To compute the similarity between two trials, each trial's pattern of choices by target number is first coded as a digit string (e.g., 1 -$2-4-5-6-3$). The Hamming distance $D_{i, i}$ between two strings i, i^{\prime} of equal length is equal to the sum of the number of differences d between each entry in the string,

$$
D_{i, i^{\prime}}=\sum_{n} d\left(x_{n}, y_{n}\right)
$$

for strings x, y of length n. We computed $D_{i, i}$ for every pair of trials, and then, for each unique pattern of choices, computed the average Hamming distance $\bar{D}_{i, i^{\prime}}$. The daily dominant pattern corresponded to the pattern with the minimum $\bar{D}_{i, i^{\prime}}$ and corresponded to a circular pattern for both monkeys (see Barack et al. 2017). Since the daily dominant pattern was circular, we refer to these as the monkeys' typical traplines.

Behavioral entropy was regressed against a number of variables and their interactions using multilinear regression. Covariates included choice number in trial, expected information, expected reward, reward outcome from the previous choice, information outcome from the previous choice, and all 2-way interactions.

Experimental Design and Statistical Analysis: Neural

All neural data were analyzed on custom software in MATLAB. For all tests, significance was Bonferroni corrected for multiple comparisons and assessed at p <0.05.

Both monkeys were trained to orient to visual targets for liquid rewards before undergoing surgical procedures to implant a head-restraint post (Crist Instruments) and receive a craniotomy and recording chamber (Crist Instruments) permitting access to PCC. All surgeries
were done in accordance with Duke University IACUC approved protocols. The animals were on isoflourane during surgery, received analgesics and prophylactic antibiotics after the surgery, and were permitted a month to heal before any recordings were performed. After recovery, both animals were trained on the trapliner task, followed by recordings from BA 23/31 in PCC. MR images were used to locate the relevant anatomical areas and place electrodes. Acute recordings were performed over many sessions. Approximately one fifth of the recordings were done using FHC (FHC, Inc., Bangor, ME) single contact electrodes and four fifths performed using Plexon (Plexon, Inc., Dallas, TX) 8-contact axial array U-probes in monkey L. No statistically significant differences in the proportion of task relevant cells were detected between the populations recorded with the two types of electrodes $\left(\chi^{2}, \mathrm{p}>0.5\right)$. All recordings in monkey R were done using the U-probes. Recordings were performed using Plexon neural recording systems. All single contact units were sorted online and then re-sorted offline with Plexon offline sorter. All axial units were sorted offline with Plexon offline sorter.

Neural responses often show non-linearities (Dayan and Abbott 2001), which can be captured using a generalized linear model (Aljadeff, Lansdell et al. 2016). We used a generalized linear model (GLM) with a log-linear link function and Poisson distributed noise estimated from the data to analyze our neuronal recordings, effectively modeling neuronal responses as an exponential function of a linear combination of the input variables. We analyzed the neural data in two epochs: a 500 ms anticipation epoch, encompassing a 250 ms pre-saccade period and the 250 ms hold fixation period to register a choice, as well as the 250 ms pre-saccade epoch itself. Covariates included choice number in the trial, expected information, expected reward,
information outcome from the last choice, reward outcome from the last choice, and all 2-way interactions.

In addition to this GLM, we confirmed our model fits in two ways for each neuron: first, we plotted the residuals against the covariates, to check for higher-order structure, and second, we used elastic net regression, to check that our significant covariates were selected by the bestfit elastic net model (Zou and Hastie 2005). Plotting residuals revealed no significant higherorder structure. Furthermore, elastic net regression confirmed our original GLM results. None of the significant covariates identified by the original GLM received a coefficient of 0 from the elastic net regression, and the sizes of the significant coefficients identified by the original GLM were very close to the sizes of the coefficients computed by the elastic net regression.

Perievent time histograms (PETHs) were created by binning spikes time-locked to the event of interest. For the anticipation epoch, PETHs were centered on the end of the choice saccade and spikes binned in 10 ms bins. PETHs were smoothed with a Gaussian kernel with 0 mean and 5σ width where $\sigma=20 \mathrm{~ms}$ (i.e., two samples).

To analyze encoding of the information or reward boundary, a log-linear GLM regression was run on vectors of binned spike counts time-locked to the start of the trial, with time in window, time of last informative feedback (a binary covariate encoding whether or not the current time bin was before or after the last informative feedback), and their interaction as covariates. Neuronal spikes were sorted into 50 ms bins starting with trial onset and ending with the time of the last outcome in a trial across the duration of the trial. This activity was regressed against time in trial (coded by the bin number, starting with 1 and ending with the number of 50 ms bins for the trial), whether or not the last informative outcome had been received (coded as a

0 , for before, or a 1 , for after receiving the last outcome), and their 2-way interaction. For plots depicting the boundary, PETHs were time-locked to the time of last informative feedback, spikes from two seconds before to two seconds after sorted into 50 ms time bins, and smoothed with a Gaussian kernel with 0 mean 5σ width where $\sigma=50 \mathrm{~ms}$ (i.e., one sample).

The failure to find representations of expected reward reported in the results was confirmed by holding fixed expected information and choice number and directly comparing observed firing rates for those combinations for which there was more than one reward level. For choice number (CN) 2, this resulted in one pair of expected rewards; for CN 3 , one pair; for CN 4 , one pair; for CN5, one triple; and for CN6, one triple. The observed firing rates for the pairs were compared using Student's t-test and for the triples using ANOVA. A neuron that showed a significant difference in those comparisons was included in the count for that choice number and so could appear as significant for more than one choice (depicted in Fig. 2C).

Step sizes, step size probabilities, and choicewise behavioral entropies were linearly regressed against the firing rates during the anticipation epoch, when actions were made. To assess whether neurons showed differences in tonic firing rates for high compared to low behavioral entropies, we fit Gaussians with constant offsets to the mean PETH firing rate and examined the confidence interval for the constant offsets for each. The constant offset for high and low behavioral entropy were considered significantly different if the 95% confidence intervals derived from those fits did not overlap. To assess choicewise entropy encoding before and after receipt of the last bit of information, we used a GLM with log-linear link function and Poisson distributed noise to calculate the number of neurons that significantly encoded choicewise behavioral entropy before the receipt of this information to compare to the number
after. Covariates included behavioral entropy, choice number in trial, a binary variable with $0=$ before boundary and $1=$ after boundary, and all 2 -way interaction. For the population response, we first separated trials by mean choicewise behavioral entropy across all choices. Next, the normalized average population response for high average choicewise entropy trials was compared to low average entropy during the two seconds before the receipt of the last information using Student's t-test. Then we ran the same analysis on the normalized average response during the two seconds following receipt of this information. We report the results of these two analyses below.

Results

Trapline Foraging in a Simulated Environment
To explore the effects of information on deviation from routines, two monkeys (M. mulatta) solved a simple traveling salesman problem. In this trapliner task, monkeys visually foraged through a set of six targets arranged in a circle, only moving on to the next trial after sampling every target (Fig. 1B). On each trial, two of the targets were baited, one with a large reward and one with a small reward, with the identity of the baited targets varying from trial to trial. While foraging, monkeys gathered both rewards, herein defined by the amount of juice obtained, and information, herein defined as the reduction in uncertainty about the location of remaining rewards.

By varying which target was rewarded from trial-to-trial, reward and information were partially decorrelated. Reward was manipulated by varying the size of received rewards, with one small, one large, and four zero rewards available on every trial. Information was
manipulated by varying the spatiotemporal pattern of rewarding targets. Different patterns correspond to different series of received rewards. Based on the series of rewards received up to a particular choice in the trial, some subset of the set of possible sequences remained, and the size of this subset determines the remaining uncertainty for the current trial (see methods). Over the course of a trial, the set of possible patterns shrinks, reducing uncertainty about the current trial's pattern and determining the information gathered about the environment. These differences in reward and information outcomes in turn determine reward and information expectations. The expected reward for each target is the total remaining reward to harvest divided by the number of remaining targets. In contrast, the expected information is the mean amount of information to be gained by making the next choice. As the animal proceeds through the trial, the amount of expected information varies as a function of how many possible patterns of rewards have been eliminated so far. Distinct possible reward outcomes may offer the same information, and so our task partially decorrelates information and reward (linear regression on expected reward and expected information, $\mathrm{R}^{2}=0.13$).

Information may influence the pattern of choices that monkeys made, resulting in trial-totrial changes in this pattern (behavioral data are the same as first reported in Barack, Chang et al. 2017). On a majority of trials, monkeys chose targets in the same order (the daily dominant pattern, DDP; Monkey R: same DDP across all 14 sessions; Monkey L: same DDP across 24 of 30 sessions; across all sessions, 0.4665 ± 0.0317 proportion of trials diverged from the DDP; see methods). More generally, monkeys usually chose the targets in a circle (proportion of trials in average session with circular patterns of choices: Monkey L: 0.6134 ± 0.0418; Monkey R: $0.7113 \pm 0.0208)$. However, they occasionally deviated from their circular routine. This
variability can be measured by finding the behavioral entropy over the distribution of choice probabilities for targets. First, each choice during a trial was egocentrically coded by its step size, the number of targets clockwise or counter-clockwise from the current trial's previously chosen target (Fig. 1B). The probability of a particular step size was computed by counting the number of trials with that step size and dividing by the total number of trials (see methods). Behavioral entropy, the entropy computed over that distribution, significantly predicts adherence to both typical traplines (DDP: logistic regression; significant ($\mathrm{p}<0.05$) β for 22 of 44 sessions) and circular traplines (logistic regression; significant β ($p<0.05$) for 33 of 44 sessions). We found that the informativeness of outcomes influenced the variability in the monkeys' patterns of choices as measured by behavioral entropy. Anticipation of more informative choice outcomes significantly reduced the entropy of the monkeys' choices on average (Student's t-test across all choices and sessions comparing behavioral entropy for less than average expected information to greater than average; Both monkeys: $t(96,718)=-19.25, \mathrm{p}<1 \times 10^{-81}$; Monkey L: $\mathrm{t}(69,274)=-$ 3.24, $\mathrm{p}<0.005$; Monkey R: $\left.\mathrm{t}(27,442)=-23.99, \mathrm{p}<1 \times 10^{-125}\right)$. To better assess the influence of expected information on behavioral variability, we plotted by session and choice number the mean behavioral entropy for zero expected information and compared it to the mean behavioral entropy for non-zero expected information. Median behavioral entropy across sessions was greater for choice numbers 4 and 5 than choice number 3 for no expected information ($\mathrm{p}<0.05$; Fig. 1C, green boxes and points) and was greater for no expected information in comparison to some expected information for choice number 5 (p<0.05; Fig. 1C, choice number 5, red boxes and points compared to green).

The presence of information or reward left to collect on a trial also drove choice variability. While still harvesting information and reward about the current trial, monkeys' choices were less variable, but afterward they became more variable in their choices (Student's ttest on choice numbers $(\mathrm{CN}) 4$ or 5 ; Both monkeys: $\mathfrak{t}(48,358)=-125.98, \mathrm{p} \sim 0$; Monkey L: $\mathrm{t}(34,636)=-96.32, \mathrm{p} \sim 0$; Monkey $\mathrm{R}: \mathrm{t}(13,720)=-71.79, \mathrm{p} \sim 0 ;$ results also significant for each CN separately; Fig. 1C, right panel). Hence, monkeys deviated less while choices were still informative or rewarding and more thereafter.

Environmental Information Signaling by Posterior Cingulate Neurons

We next probed PCC activity during the trapliner task to examine information and reward signaling from 124 cells in two monkeys (Fig. 1A; monkey $L=84$ neurons; monkey $R=40$ neurons; neural data are the same as first reported in Barack, Chang et al. 2017). In order to control for previously uncovered neural effects, all choices where monkeys diverged from typical traplines were excluded from the analyses in this section (those neural findings are reported in Barack, Chang et al. 2017).

During the anticipation epoch (500 ms encompassing a 250 ms pre-choice period and a 250 ms hold fixation period), neurons in PCC preferentially signaled information expectations over reward expectations. An example cell (Fig. 2A) showed a phasic increase in firing rate during the anticipation epoch when expected information was higher for the same choice number in the trial (for example, choice number two $\left(\mathrm{CN}_{2}\right)$: Student's t -test, $\mathrm{p}<0.0001$, $\mathrm{t}(283)=-$ 4.3056; firing rate for 0.72 bits $=22.51 \pm 1.46 \mathrm{spikes} / \mathrm{sec}$, firing rate for $1.37 \mathrm{bits}=29.84 \pm 0.95$ spikes/sec). However, after controlling for choice number in the trial and expected information,
the same neuron did not differentiate between different amounts of expected reward (Student's ttest, $\mathrm{p}>0.9$; firing rate for 0.2 expected reward $=22.23 \pm 2.35$ spikes $/ \mathrm{sec}$, firing rate for 0.4 expected reward $=22.76 \pm 1.83$ spikes $/ \mathrm{sec}$; Fig. 2 A , second row from bottom, left panel). The tuning curves for this same cell collapsed across all choice numbers for both expected information and expected reward illustrate the strong sensitivity to larger amounts of information (Fig. 2B).

In our population of 124 neurons, significantly more cells were tuned to information than reward when controlling for choice number in trial. A generalized linear model (GLM) regression revealed that during the anticipation epoch, $35(28 \%)$ of 124 neurons (Monkey L: 25 (30\%) of 84 neurons; Monkey R: 10 (25%) of 40 neurons) signaled the interaction of choice number and expected information, but only $1(\sim 1 \%)$ of 124 neurons (Monkey L: $1(\sim 1 \%)$ of 84 neurons; Monkey R: $0(0 \%)$ of 40 neurons) signaled the interaction of choice number and expected reward (all results, $\mathrm{p}<0.05$, Bonferroni corrected; see methods for full list of covariates in the GLM). A further test for signaling of expected reward compares the average firing rates for different amounts of expected reward for the same choice number and expected information. This test revealed that only about 10% of neurons signaled expected reward, except on the last choice when all information had been received (Fig. 2C). In contrast, about 20% of neurons signaled expected information (Fig. 2C). These proportions were not significantly different when all circular traplines were included (expected information X choice number, $\chi^{2}>$ 0.24; expected reward X choice number, $\chi^{2}>0.17$).

PCC Neurons Index Response Variability

We have previously established that PCC neurons signal decisions to diverge from typical traplines during our task (Barack, Chang et al. 2017). However, the extent to which these cells track variability of responses during the task remains to be explored. We examined whether PCC neurons index the degree of behavioral variability, operationalized as behavioral entropy (BE; see methods; all trials, including divergences from typical traplines, are included in the following analyses). During the pre-saccade epoch, behavioral entropy varied significantly with firing rate for 48 (39\%) of 124 neurons (linear regression of behavioral entropy against firing rate, p < 0.05 ; Monkey L: 37 (44\%) of 84 neurons, Monkey R: 11 (28\%) of 40 neurons). An example cell was more active for high entropy choices compared to low (linear regression, $\beta_{\mathrm{BE}}=$ 0.0229 ± 0.0026 bits $_{\mathrm{BE}} /$ spike, $\mathrm{p}<5 \times 10^{-18}$; Fig. 3A). Across the population, higher firing rates predicted greater behavioral entropy (124 neurons; Student's t-test on mean normalized firing rates during pre-saccade epoch, $\mathrm{t}(123)=2.7363, \mathrm{p}<0.01 ; \beta_{\mathrm{BE}}>0$ in 80 cells, $\beta_{\mathrm{BE}} \leq 0$ in 44 cells; mean $\beta_{\mathrm{BE}}=0.0025 \pm 0.0011$ bits $_{\mathrm{BE}} /$ spike, Student's t -test against h_{0} : mean $\beta_{\mathrm{BE}}=0, \mathrm{t}(123)=$ 2.3268, p < 0.05; Fig. 3B). In addition, in our population of 124 cells, 46 (37%) exhibited significantly different ($\mathrm{p}<0.05$) tonic firing rates for high behavioral entropy compared to low behavioral entropy choices during the anticipation epoch (Monkey L: 35/84 (42\%); Monkey R: 11/40 (28\%)).

We next investigated whether PCC neurons signaled the boundary defined by the receipt of the last information or reward, when the pattern of rewards on a given trial becomes fully resolved. Note that this can occur before the last reward is delivered if the last reward is received on the last choice in a trial. A regression of each trial's binned spike counts against the time in the trial and the time of last informative outcome revealed that 84 (68%) of 124 neurons
differentiated these two states (GLM, effect of interaction, $\mathrm{p}<0.05$; see methods; monkey L: 61 of 84 neurons, 73%; monkey R: 23 of 40 neurons, 58%). During a four second epoch centered on the time of the last informative choice outcome, an example cell fired less before that outcome than after (Student's t-test, $\mathrm{p}<1 \times 10^{-56}$; Fig. 3C). The population of cells also fire more after this boundary (Student's t-test, $\mathrm{p}<0.005$; Fig. 3D).

Finally, behavioral entropy signals and boundary signals were combined in the PCC population. While the time of last information can be partly disambiguated from time of last reward, this occurs only on the last choice when a single target remains. Since behavioral entropy is a measure of response variability, it requires more than one target, which is not available on the last choice. As a result, combined signals of behavioral entropy and the boundary could reflect the end of either information gathering or reward harvesting. Significantly fewer cells $\left(\chi^{2}, \mathrm{p}<1 \times 10^{-10}\right)$ predicted behavioral entropy after receiving all information or reward (24 (19\%) of 124 neurons) than before (74 (60%) neurons). PCC population responses on choices with high behavioral entropy compared to low entropy revealed significant differences before receipt of the last informative or rewarding outcome (Student's ttest, $\mathrm{p}<1 \mathrm{x} 10^{-4}$) but not after (Student's t-test, $\mathrm{p}>0.5$), with greater modulation for high entropy compared to low.

Discussion

In this study, we show that environmental information influences responses during routine behavior and that firing rates of PCC neurons carry this information and predict behavioral variability. Despite the fact that in our task monkeys could not utilize environmental
information to increase their chance of reward, the receipt of environmental information and the exhaustion of uncertainty impacted behavioral routines. Monkeys' responses were less variable when there was more information to be gathered, but became more variable once the environment became fully known. This pattern of variable responses after resolving all environmental uncertainty departs from the reward rate maximizing strategy of selecting targets in a circle to minimize saccade lengths. While monkeys traplined, neurons in PCC robustly signaled information expectations but not reward expectations and predicted the variability in the patterns of choices. Finally, PCC neurons differentiate the degree of behavioral variability before all information or reward was received about the pattern of rewards compared to after, with an increase in activity following receipt of the last informative outcome and concomitant decreases in forecasting behavioral variability. In sum, our experimental findings suggest that PCC tracks the state of the environment in order to influence routine behavior.

Monkeys often chose targets in the same pattern, consistent with previous findings of repetitive stereotyped foraging in wild primate groups (Noser and Byrne 2007). They also generally moved in a circle, visiting the next nearest neighbor after the current target, likewise consistent with previous findings in groups of wild foraging primates (Menzel 1973, Garber 1988, Janson 1998). These foraging choices almost always result in straight line routes (Janson 1998, Pochron 2001, Cunningham and Janson 2007, Valero and Byrne 2007) or a series of straight lines (Di Fiore and Suarez 2007, Noser and Byrne 2007). Experiments on captive primates have also observed nearest neighbor or near optimal path finding (Menzel 1973, MacDonald and Wilkie 1990, Gallistel and Cramer 1996, Cramer and Gallistel 1997). Our monkeys' choices are also consistent with human behavior on traveling salesman problems,
wherein next nearest neighbor paths are usually chosen for low numbers of points (Hirtle and Gärling 1992, MacGregor and Ormerod 1996, MacGregor and Chu 2011).

The PCC, a posterior midline cortical region with extensive cortico-cortical connectivity (Heilbronner and Haber 2014) and elevated resting state and off-task metabolic activity (Buckner, Andrews-Hanna et al. 2008), is at the heart of the default mode network (DMN) (Buckner, Andrews-Hanna et al. 2008). The DMN is a cortex-spanning network implicated in exploratory cognition including imagination (Schacter, Addis et al. 2012), creativity (Kühn, Ritter et al. 2014), and narration (Wise and Braga 2014). Though implicated in a range of cognitive functions, activity in PCC may be unified by a set of computations related to harvesting information from the environment to regulate behavior. Signals in PCC that carry information about environmental decision variables such as value (McCoy, Crowley et al. 2003), risk (McCoy and Platt 2005), and decision salience (Heilbronner, Hayden et al. 2011) may in fact reflect the tracking of information returns from the immediate environment. For example, in a two alternative forced choice task, neurons in PCC preferentially signaled the resolution of a risky choice with a variable reward over the value of choosing a safe choice with a guaranteed reward (McCoy and Platt 2005). Such signals may reflect the information associated with the resolution of uncertainty regarding the risky option. PCC neurons also signal reward-based exploration (Pearson, Hayden et al. 2009) and microstimulation in PCC can shift monkeys from a preferred option to one they rarely choose (Hayden, Nair et al. 2008). Both of these functions may reflect signaling of environmental information as well; for example, the signaling of exploratory choices may reflect the information from an increase in the number of recent sources of reward (Pearson, Hayden et al. 2009). Evidence from neuroimaging studies in humans
similarly reveals PCC activation in a wide range of cognitive processes related to adaptive cognition, including imagination (Benoit, Gilbert et al. 2011), decision making (Kable and Glimcher 2007), and creativity (Beaty, Benedek et al. 2015).

Uncovering the neural circuits that underlie variability in foraging behavior may provide insight into more complex cognitive functions. A fundamental feature of what we call prospective cognition, thoughts about times, places, and objects beyond the here and now, involves consideration of different ways the world might turn out. Various types of prospective cognition, including imagination, exploration and creativity, impose a tradeoff between engaging well-rehearsed routines and deviating in search of new, potentially better solutions (Gottlieb, Oudeyer et al. 2013, Andrews-Hanna, Smallwood et al. 2014, Beaty, Benedek et al. 2015). For example, creativity involves diverging from usual patterns of thought, such as occurs in generating ideas (Benedek, Jauk et al. 2014) or crafting novel concepts (Barron 1955, Guilford 1959). During creative episodes the PCC shows increased activity during idea generation (Benedek, Jauk et al. 2014) and higher connectivity with control networks during idea evaluation (Beaty, Benedek et al. 2015), perhaps reflecting imagined, anticipated, or predicted variation in the environment. Exploration similarly involves diverging from the familiar, such as to locate novel resources (Ohashi and Thomson 2005) or discover shorter paths (Sutton and Barto 1998) between known locations. Such prospective cognition requires diverging from routine thought, and the identification of the neural circuits that mediate deviations from motor routines may provide initial insight into the computations and mechanisms of prospective cognition. The discovery that the PCC preferentially signals the state of the environment and predicts behavioral variability relative to that state is a first step towards understanding these circuits.

The reinforcement learning literature is replete with models where exploration is driven by the search for information (Schmidhuber 1991, Johnson, Varberg et al. 2012). These models hypothesize that agents should take actions that maximize the information gleaned from the environment, either by reducing uncertainty about the size of offered rewards (Schmidhuber 1991), the location of rewards in the environment (Johnson, Varberg et al. 2012), or otherwise maximizing information for subsequent decisions. Furthermore, evidence from initial studies studying information-based exploration shows that humans are avid information-seekers (Miller 1983, Fu and Pirolli 2007) and regulate attentional and valuational computations on the basis of information (Manohar and Husain 2013, Blanchard, Hayden et al. 2015). In our task, the PCC represented environmental information and tracked when learning about the environment was complete, two variables central to information-based exploration. In particular, the dramatic change in firing rates associated with the end of information gathering suggests that PCC represents the information state of the environment and possibly also the rate of information intake, a central variable in information foraging models (Pirolli and Card 1999, Fu and Pirolli 2007, Pirolli 2007). PCC appears poised to regulate exploration for information.

In sum, harvested information and response variability were both signaled by PCC neurons, suggesting a central role for PCC in how information drives exploration and possibly prospective cognition. Monkeys were sensitive to the amount of uncertainty remaining in the environment, with more reliable patterns of choices while information remained and more variable patterns after environmental uncertainty had been resolved and all rewards collected. PCC neurons preferentially tracked this information and predicted the variability in monkeys' behavior. Our findings implicate the PCC in the regulation of foraging behavior, and specifically
the information-driven deviation from routines. When at the races, PCC will both track who won and set the stage for changing up your bets.

Acknowledgments: This work was supported by the National Eye Institute of the National Institutes of Health (R01 EY013496 to M.L.P.) and an Incubator Award from the Duke Institute for Brain Sciences. We thank Jean-François Garièpy for discussions during task development. We heartily thank Akram Bakkour for assistance with data analysis. Correspondence and requests for materials should be addressed to dbarack@gmail.com, or to the Center for Science and Society, Fayerweather Hall 511, Columbia University, 1180 Amsterdam Ave., New York, NY 10027.

Contributions: D.L.B. designed the experiment, D.L.B. collected and analyzed the data, D.L.B. and M.L.P. prepared and revised the manuscript.

References

Aljadeff, J., B. J. Lansdell, A. L. Fairhall and D. Kleinfeld (2016). "Analysis of neuronal spike trains, deconstructed." Neuron 91(2): 221-259.
Andrews-Hanna, J. R., J. Smallwood and R. N. Spreng (2014). "The default network and selfgenerated thought: component processes, dynamic control, and clinical relevance." Annals of the New York Academy of Sciences 1316(1): 29-52.
Barack, D. L., S. W. C. Chang and M. L. Platt (2017). "Posterior cingulate neurons dynamically signal decisions to disengage during foraging." Neuron 96(2): 339-347.e335.

Barron, F. (1955). "The disposition toward originality." The Journal of Abnormal and Social Psychology 51(3): 478.
Beaty, R. E., M. Benedek, S. B. Kaufman and P. J. Silvia (2015). "Default and executive network coupling supports creative idea production." Scientific reports 5.
Bell, W. J. (1990). When to return to a resource patch. Searching Behaviour, Springer: 117-129.
Benedek, M., E. Jauk, A. Fink, K. Koschutnig, G. Reishofer, F. Ebner and A. C. Neubauer (2014). "To create or to recall? Neural mechanisms underlying the generation of creative new ideas." NeuroImage 88: 125-133.
Benoit, R. G., S. J. Gilbert and P. W. Burgess (2011). "A Neural Mechanism Mediating the Impact of Episodic Prospection on Farsighted Decisions." The Journal of Neuroscience 31(18): 6771-6779.
Berger-Tal, O. and S. Bar-David (2015). "Recursive movement patterns: review and synthesis across species." Ecosphere 6(9): art149.
Blanchard, T. C., B. Y. Hayden and E. S. Bromberg-Martin (2015). "Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity." Neuron $\mathbf{8 5}(3)$: 602-614.
Boggs, C. L., J. T. Smiley and L. E. Gilbert (1981). "Patterns of pollen exploitation by Heliconius butterflies." Oecologia 48(2): 284-289.
Buckner, R. L., J. R. Andrews-Hanna and D. L. Schacter (2008). "The brain's default network: anatomy, function, and relevance to disease." Ann N Y Acad Sci 1124: 1-38.
Clithero, J. A. and A. Rangel (2014). "Informatic parcellation of the network involved in the computation of subjective value." Social cognitive and affective neuroscience 9(9): 1289-1302.
Cramer, A. E. and C. R. Gallistel (1997). "Vervet monkeys as travelling salesmen." Nature 387: 464.

Cunningham, E. and C. Janson (2007). "Integrating information about location and value of resources by white-faced saki monkeys (Pithecia pithecia)." Animal cognition 10(3): 293-304.
Dayan, P. and L. F. Abbott (2001). Theoretical Neuroscience. Cambridge, Massachusetts, MIT Press.
Desrochers, T. M., D. Z. Jin, N. D. Goodman and A. M. Graybiel (2010). "Optimal habits can develop spontaneously through sensitivity to local cost." Proceedings of the National Academy of Sciences 107(47): 20512-20517.
Di Fiore, A. and S. A. Suarez (2007). "Route-based travel and shared routes in sympatric spider and woolly monkeys: cognitive and evolutionary implications." Animal cognition 10 (3): 317329.

Freeman, R. (1968). "Charles Darwin on the routes of male humble bees." Bulletin of the British Museum (Natural History) Historical Series 3(6): 177-189.
Fu, W.-T. and P. Pirolli (2007). "SNIF-ACT: A cognitive model of user navigation on the World Wide Web." Human-Computer Interaction 22(4): 355-412.
Gallistel, C. R. and A. E. Cramer (1996). "Computations on metric maps in mammals: getting oriented and choosing a multi-destination route." The Journal of Experimental Biology 199(1): 211-217.

Garber, P. A. (1988). "Foraging decisions during nectar feeding by tamarin monkeys (Saguinus mystax and Saguinus fuscicollis, Callitrichidae, Primates) in Amazonian Peru." Biotropica: 100106.

Garrison, J. S. and C. L. Gass (1999). "Response of a traplining hummingbird to changes in nectar availability." Behavioral Ecology 10(6): 714-725.
Gill, F. B. (1988). "Trapline foraging by hermit hummingbirds: competition for an undefended, renewable resource." Ecology: 1933-1942.
Gottlieb, J., P.-Y. Oudeyer, M. Lopes and A. Baranes (2013). "Information-seeking, curiosity, and attention: computational and neural mechanisms." Trends in cognitive sciences 17(11): 585593.

Guilford, J. P. (1959). "Traits of creativity." Creativity and its cultivation 10: 141-161.
Hamming, R. W. (1950). "Error detecting and error correcting codes." Bell System technical journal 29(2): 147-160.
Hayden, B. Y., A. C. Nair, A. N. McCoy and M. L. Platt (2008). "Posterior cingulate cortex mediates outcome-contingent allocation of behavior." Neuron $\mathbf{6 0}(1):$ 19-25.
Hayden, B. Y. and M. L. Platt (2010). "Neurons in anterior cingulate cortex multiplex information about reward and action." J Neurosci 30(9): 3339-3346.
Heilbronner, S. R. and S. N. Haber (2014). "Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders." The Journal of Neuroscience 34(30): 10041-10054.
Heilbronner, S. R., B. Y. Hayden and M. L. Platt (2011). "Decision salience signals in posterior cingulate cortex." Frontiers in neuroscience 5.
Heilbronner, Sarah R. and Michael L. Platt (2013). "Causal Evidence of Performance Monitoring by Neurons in Posterior Cingulate Cortex during Learning." Neuron 80(6): 1384-1391.
Hemmi, J. M. and C. R. Menzel (1995). "Foraging strategies of long-tailed macaques, Macaca fascicularis: directional extrapolation." Animal behaviour 49(2): 457-464.
Hirtle, S. C. and T. Gärling (1992). "Heuristic rules for sequential spatial decisions." Geoforum 23(2): 227-238.
Hui, S. K., P. S. Fader and E. T. Bradlow (2009). "Research note-The traveling salesman goes shopping: The systematic deviations of grocery paths from TSP optimality." Marketing Science 28(3): 566-572.
Janmaat, K. R. L., R. W. Byrne and K. Zuberbühler (2006). "Evidence for a spatial memory of fruiting states of rainforest trees in wild mangabeys." Animal Behaviour 72(4): 797-807.
Janson, C. H. (1998). "Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella." Animal Behaviour 55(5): 1229-1243.
Janzen, D. (1971). "Euglossine bees as long-distance pollinators of tropical plants." Science 171(3967): 203-205.
Johnson, A., Z. Varberg, J. Benhardus, A. Maahs and P. Schrater (2012). "The hippocampus and exploration: dynamically evolving behavior and neural representations." Frontiers in human neuroscience 6.
Kable, J. W. and P. W. Glimcher (2007). "The neural correlates of subjective value during intertemporal choice." Nat Neurosci 10(12): 1625-1633.

Kühn, S., S. M. Ritter, B. C. N. Müller, R. B. Baaren, M. Brass and A. Dijksterhuis (2014). "The importance of the default mode network in creativity-a structural MRI study." The Journal of Creative Behavior 48(2): 152-163.
Leech, R., S. Kamourieh, C. F. Beckmann and D. J. Sharp (2011). "Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control." The Journal of Neuroscience 31(9): 3217-3224.
MacDonald, S. E. and D. M. Wilkie (1990). "Yellow-nosed monkeys'(Cercopithecus ascanius whitesidei) spatial memory in a simulated foraging environment." Journal of Comparative Psychology 104(4): 382.
MacGregor, J. N. and Y. Chu (2011). "Human performance on the traveling salesman and related problems: A review." The Journal of Problem Solving 3(2): 2.
MacGregor, J. N. and T. Ormerod (1996). "Human performance on the traveling salesman problem." Perception \& Psychophysics 58(4): 527-539.
Manning, A. (1956). "Some aspects of the foraging behaviour of bumble-bees." Behaviour 9(1): 164-200.
Manohar, S. G. and M. Husain (2013). "Attention as foraging for information and value." Frontiers in human neuroscience 7: 711.
McCoy, A. N., J. C. Crowley, G. Haghighian, H. L. Dean and M. L. Platt (2003). "Saccade reward signals in posterior cingulate cortex." Neuron 40(5): 1031-1040.
McCoy, A. N. and M. L. Platt (2005). "Risk-sensitive neurons in macaque posterior cingulate cortex." Nature Neuroscience 8(9): 1220-1227.
McNamara, J. (1982). "Optimal patch use in a stochastic environment." Theoretical Population Biology 21(2): 269-288.
Menzel, C. (1996). "Structure-guided foraging in long-tailed macaques." American Journal of Primatology 38(2): 117-132.
Menzel, C. R. (1991). "Cognitive aspects of foraging in Japanese monkeys." Animal Behaviour 41(3): 397-402.
Menzel, E. W. (1973). "Chimpanzee spatial memory organization." Science 182(4115): 943-945.
Miller, G. (1983). Informavores. The study of information: Interdisciplinary messages. F. Machlup and U. Mansfield, Wiley-Interscience: 111-113.
Noser, R. and R. W. Byrne (2007). "Travel routes and planning of visits to out-of-sight resources in wild chacma baboons, Papio ursinus." Animal Behaviour 73(2): 257-266.
Noser, R. and R. W. Byrne (2010). "How do wild baboons (Papio ursinus) plan their routes? Travel among multiple high-quality food sources with inter-group competition." Animal cognition 13(1): 145-155.
Ohashi, K., A. Leslie and J. D. Thomson (2008). "Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance." Behavioral Ecology 19(5): 936-948.
Ohashi, K., A. Leslie and J. D. Thomson (2013). "Trapline foraging by bumble bees: VII. Adjustments for foraging success following competitor removal." Behavioral ecology 24(3): 768-778.
Ohashi, K. and J. D. Thomson (2005). "Efficient harvesting of renewing resources." Behavioral Ecology 16(3): 592-605.

Pearson, J. M., B. Y. Hayden, S. Raghavachari and M. L. Platt (2009). "Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multioption choice task." Curr Biol 19(18): 1532-1537.
Pirolli, P. and S. Card (1999). "Information foraging." Psychological review 106(4): 643.
Pirolli, P. L. T. (2007). Information foraging theory: Adaptive interaction with information, Oxford University Press.
Pochron, S. T. (2001). "Can concurrent speed and directness of travel indicate purposeful encounter in the yellow baboons (Papio hamadryas cynocephalus) of Ruaha National Park, Tanzania?" International Journal of Primatology 22(5): 773-785.
Possingham, H. P. (1989). "The distribution and abundance of resources encountered by a forager." American Naturalist: 42-60.
Racey, P. and S. Swift (1985). "Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. I. Foraging behaviour." The Journal of Animal Ecology: 205-215.
Schacter, Daniel L., Donna R. Addis, D. Hassabis, Victoria C. Martin, R. N. Spreng and Karl K. Szpunar (2012). "The Future of Memory: Remembering, Imagining, and the Brain." Neuron 76(4): 677-694.
Schmidhuber, J. (1991). Curious model-building control systems. 1991 IEEE International Joint Conference on Neural Networks., IEEE.
Stephens, D. W. and J. R. Krebs (1986). Foraging Theory. Princeton, NJ, Princeton University Press.
Sutton, R. S. and A. G. Barto (1998). Reinforcement learning : an introduction. Cambridge, Mass., MIT Press.
Valero, A. and R. W. Byrne (2007). "Spider monkey ranging patterns in Mexican subtropical forest: do travel routes reflect planning?" Animal cognition 10(3): 305-315.
Wan, X., K. Cheng and K. Tanaka (2015). "Neural encoding of opposing strategy values in anterior and posterior cingulate cortex." Nature neuroscience 18(5): 752-759.
Wise, R. J. S. and R. M. Braga (2014). "Default mode network: the seat of literary creativity?" Trends in cognitive sciences 18(3): 116-117.
Zou, H. and T. Hastie (2005). "Regularization and variable selection via the elastic net." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(2): 301-320.

Figures

Fig. 1. Monkeys spontaneously trapline, efficiently choosing targets in a circle, when foraging in a circular array but deviate from these routines as the environment becomes better known. A. Recording location in the posterior cingulate cortex (PCC). Left: Monkey L. Right: Monkey R. B. Traplining task, sample trial sequence. Trials began with monkeys fixating a central cross for a variable amount of time. After fixation offset, six targets appeared in the same locations across trials. Monkeys then chose targets in any order. To register a choice, monkeys fixated targets for 250 ms . Only two rewards, one small and one large, were available on every trial, and the
identity of the rewarded targets changed in a pseudorandom fashion from trial to trial. In order to advance to the next trial, monkeys had to select every target. Open circle: simulated eye position; dashed arrow: direction of impending saccade; dashed circle: impending saccade endpoint; small juice drop: small reward; large juice drop: large reward. Central semi-circle: step size, the clockwise or counter-clockwise distance between subsequently chosen targets; ' S ' = start; ' -2 ' = two targets counter-clockwise; ' -1 ' = one target counter-clockwise; ' +1 ' = one target clockwise. C. Left panel: mean \pm s.e.m. behavioral entropy for high expected environmental information $\left(\Delta \mathrm{H}_{\mathrm{E}}\right)$ choices $\left(\mathrm{E}\left[\Delta \mathrm{H}_{\mathrm{E}}\right]>\operatorname{mean}\left(\mathrm{E}\left[\Delta \mathrm{H}_{\mathrm{E}}\right]\right)\right)$ compared to low expected information choices $\left(\mathrm{E}\left[\Delta \mathrm{H}_{\mathrm{E}}\right] \leq \operatorname{mean}\left(\mathrm{E}\left[\Delta \mathrm{H}_{\mathrm{E}}\right]\right)\right)$ across all sessions and choices; right panel: boxplot by choice number $(2-5)$ across sessions before receipt of last informative outcome $\left(\mathrm{E}\left[\Delta \mathrm{H}_{\mathrm{E}}\right]>0\right.$; red points $)$ and after $\left(E\left[\Delta H_{E}\right]=0\right.$; green points). Top and bottom of box are interquartile ($25 \%-75 \%$) range of session means, and notch indicates 95% CI for median session. Non-overlapping notches indicate significantly different medians at $\alpha=0.05$. Each point is a session mean. Choice number 2 always possesses some expected information, hence no green box or points. $\mathrm{n}=145,524$ choices, 24,254 trials.

Fig. 2. PCC neurons preferentially encode environmental information over reward. A. Firing rate of sample neuron encoding expected information but not expected reward across all choice numbers (CN) one through six, plotted separately by expected information $\left(\mathrm{E}\left[\Delta \mathrm{H}_{\mathrm{E}}\right]\right)$. Legends indicate expected reward(s) for each plot. Blue line = end of saccade. B. Tuning curves for expected information (top panel) and expected reward (bottom panel), collapsed across choice numbers for better visibility, for the cell plotted in \mathbf{A}. This example cell showed elevated firing rates for higher amounts of information. Note that the elevated firing rates for certain amounts of expected reward correspond to choices with high expected information with only a single level of expected reward. C. Number of cells encoding expected reward by choice (red) for constant expected information, and number of cells encoding expected information by choice (green). Neurons were included in the expected reward counts if Student t-tests (CN2 -4) or ANOVA (CN5 - 6) indicated a significant difference in firing rates ($\mathrm{p}<0.05$, uncorrected for multiple comparisons to allow the weakest criteria for inclusion, and the same cell could appear for more than one choice number).

Fig. 3. Neurons in PCC forecast deviations in behavior. A. Sample neuron encoding behavioral entropy during the anticipation epoch. This cell was more active for high entropy choices than for low entropy choices. B. Population encoding of behavioral entropy. The population was more active for high entropy choices than low. C. Sample cell encoding the end of information gathering. This cell had higher firing rates after the last informative or rewarding outcome compared to before. Thin blue lines with dashed lines very close on either side: average time of choice before (left) or after (right) last informative or rewarding choice ± 1 s.e.m. D. The
population also encoded this boundary, with higher firing rates after the last informative or rewarding outcome compared to before. \mathbf{B} and \mathbf{D} plots: $\mathrm{n}=124$ cells. \mathbf{A} and \mathbf{B} plots: blue line $=$ end of saccade; \mathbf{C} and \mathbf{D} plots: central blue line $=$ time of outcome. All plots: shading $= \pm 1$ s.e.m. $*=\mathrm{p}<0.05$ for that 10 ms time bin.

A

C

B

D

