Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Selective prefrontal-amygdala circuit interactions underlie social and nonsocial valuation in rhesus macaques

Maia S. Pujara, Nicole K. Ciesinski, Joseph F. Reyelts, Sarah E.V. Rhodes and Elisabeth A. Murray
Journal of Neuroscience 2 June 2022, JN-RM-0794-21; DOI: https://doi.org/10.1523/JNEUROSCI.0794-21.2022
Maia S. Pujara
Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Maia S. Pujara
Nicole K. Ciesinski
Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph F. Reyelts
Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah E.V. Rhodes
Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elisabeth A. Murray
Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Elisabeth A. Murray
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Lesion studies in macaques suggest dissociable functions of the orbitofrontal cortex (OFC) and medial frontal cortex (MFC), with OFC being essential for goal-directed decision making and MFC supporting social cognition. Bilateral amygdala damage results in impairments in both of these domains. There are extensive reciprocal connections between these prefrontal areas and the amygdala; however, it is not known whether the dissociable roles of OFC and MFC depend on functional interactions with the amygdala. To test this possibility, we compared the performance of male rhesus macaques (Macaca mulatta) with crossed surgical disconnection of the amygdala and either MFC (MFC x AMY, n=4) or OFC (OFC x AMY, n=4) to a group of unoperated controls (CON, n=5). All monkeys were assessed for their performance on two tasks to measure: (1) food-retrieval latencies while viewing videos of social and nonsocial stimuli in a test of social interest, and (2) object choices based on current food value using reinforcer devaluation in a test of goal-directed decision making. Compared to the CON group, the MFC x AMY group, but not the OFC x AMY group, showed significantly reduced food-retrieval latencies while viewing videos of conspecifics, indicating reduced social valuation and/or interest. By contrast, on the devaluation task, group OFC x AMY, but not group MFC x AMY, displayed deficits on object choices following changes in food value. These data indicate that the MFC and OFC must functionally interact with the amygdala to support normative social and nonsocial valuation, respectively.

Significance Statement

Ascribing value to conspecifics (social) vs. objects (nonsocial) may be supported by distinct but overlapping brain networks. Here we test whether two nonoverlapping regions of the prefrontal cortex, the medial frontal cortex and the orbitofrontal cortex, must causally interact with the amygdala to sustain social valuation and goal-directed decision making, respectively. We found that these prefrontal-amygdala circuits are functionally dissociable, lending support for the idea that medial frontal and orbital frontal cortex make independent contributions to cognitive appraisals of the environment. These data provide a neural framework for distinct value assignment processes and may enhance our understanding of the cognitive deficits observed following brain injury or in the development of mental health disorders.

Footnotes

  • The authors declare no competing financial interests.

  • This work was supported by the Intramural Research Program of the National Institute of Mental Health (EAM, ZIAMH002887). MSP was supported by a National Institutes of Health Center for Compulsive Behavior Postdoctoral Fellowship. We thank Dawn Lundgren, Emily Moylan, and Emily Fiuzat for assistance with data collection; Richard Saunders and Emily Moylan for help performing surgery; and Ben Jung, Jakob Seidlitz, and Adam Messinger for assistance with the lesion assessments. We also thank the staff of the Nuclear Magnetic Resonance Facility, National Institute of Neurological Disorders and Stroke, and the Laboratory of Diagnostic and Radiology Research. Current author affiliations: MSP (Sarah Lawrence College, 1 Mead Way, Bronxville, NY 10708); NKC (Temple University, 1701 N Broad St, Philadelphia, PA 19122); SEVR (Division of Program Coordination, Planning, and Strategic Initiatives, National Institutes of Health, Bethesda, MD 20892).

SfN exclusive license.

Back to top
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Selective prefrontal-amygdala circuit interactions underlie social and nonsocial valuation in rhesus macaques
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Selective prefrontal-amygdala circuit interactions underlie social and nonsocial valuation in rhesus macaques
Maia S. Pujara, Nicole K. Ciesinski, Joseph F. Reyelts, Sarah E.V. Rhodes, Elisabeth A. Murray
Journal of Neuroscience 2 June 2022, JN-RM-0794-21; DOI: 10.1523/JNEUROSCI.0794-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Selective prefrontal-amygdala circuit interactions underlie social and nonsocial valuation in rhesus macaques
Maia S. Pujara, Nicole K. Ciesinski, Joseph F. Reyelts, Sarah E.V. Rhodes, Elisabeth A. Murray
Journal of Neuroscience 2 June 2022, JN-RM-0794-21; DOI: 10.1523/JNEUROSCI.0794-21.2022
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
  • Activity-dependent Nr4a2 induction modulates synaptic expression of AMPA receptors and plasticity via a Ca2+/CRTC1/CREB pathway
  • Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System
Show more Research Articles

Behavioral/Cognitive

  • Neural index of reinforcement learning predicts improved stimulus-response retention under high working memory load
  • Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System
  • Accelerating maturation of spatial memory systems by experience – evidence from sleep oscillation signatures of memory processing
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.