Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Cellular/Molecular

Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer’s Disease Model

Qian Shi, Cheng Chang, Afaf Saliba and Manzoor A. Bhat
Journal of Neuroscience 7 June 2022, JN-RM-2427-21; DOI: https://doi.org/10.1523/JNEUROSCI.2427-21.2022
Qian Shi
Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cheng Chang
Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Afaf Saliba
Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Afaf Saliba
Manzoor A. Bhat
Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Manzoor A. Bhat
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The mechanistic Target of Rapamycin (mTOR) signaling pathway plays a major role in key cellular processes including metabolism and differentiation; however, the role of mTOR in microglia and its importance in Alzheimer’s disease (AD) has remained largely uncharacterized. We report that selective loss of Tsc1, a negative regulator of mTOR, in microglia in mice of both sexes, caused mTOR activation and upregulation of Trem2 with enhanced β-Amyloid clearance, reduced spine loss, and improved cognitive function in the 5XFAD AD mouse model. Combined loss of Tsc1 and Trem2 in microglia led to reduced β-Amyloid clearance and increased Aβ plaque burden revealing that Trem2 functions downstream of mTOR. Tsc1 mutant microglia showed increased phagocytosis with upregulation of CD68 and Lamp1 lysosomal proteins. In vitro studies using Tsc1-deficient microglia revealed enhanced endocytosis of the lysosomal tracker indicator Green DND-26 suggesting increased lysosomal activity. Incubation of Tsc1-deficient microglia with fluorescent-labeled Aβ revealed enhanced Aβ uptake and clearance, which was blunted by rapamycin, an mTOR inhibitor. In vivo treatment of mice of relevant genotypes in the 5XFAD background with rapamycin, affected microglial activity, decreased Trem2 expression and reduced Aβ clearance causing an increase in Aβ plaque burden. Prolonged treatment with rapamycin caused even further reduction of mTOR activity, reduction in Trem2 expression, and increase in Aβ levels. Together, our findings reveal that mTOR signaling in microglia is critically linked to Trem2 regulation and lysosomal biogenesis, and that the up-regulation of Trem2 in microglia through mTOR activation could be exploited towards better therapeutic avenues to β-Amyloid-related AD pathologies.

Significance statement:

mTOR signaling pathway is a key regulator for major cellular metabolic processes. However, the link between mTOR signaling and AD is not well understood. In this study, we provide compelling in vivo evidence that mTOR activation in microglia would benefit β-Amyloid related AD pathologies, as it upregulates Trem2, a key receptor for β-Amyloid plaque uptake. Inhibition of mTOR pathway with rapamycin, a well-established immunosuppressant, downregulated Trem2 in microglia and reduced β-Amyloid plaque clearance indicating that mTOR inactivation may be detrimental in β-Amyloid-associated AD patients. This finding will have a significant public health impact and benefit, regarding the usage of rapamycin in AD patients, which we believe will aggravate the β-Amyloid-related AD pathologies.

Footnotes

  • The authors declare no competing financial interests.

SfN exclusive license.

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer’s Disease Model
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer’s Disease Model
Qian Shi, Cheng Chang, Afaf Saliba, Manzoor A. Bhat
Journal of Neuroscience 7 June 2022, JN-RM-2427-21; DOI: 10.1523/JNEUROSCI.2427-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer’s Disease Model
Qian Shi, Cheng Chang, Afaf Saliba, Manzoor A. Bhat
Journal of Neuroscience 7 June 2022, JN-RM-2427-21; DOI: 10.1523/JNEUROSCI.2427-21.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Dendritic Inhibition by Shh Signaling-Dependent Stellate Cell Pool Is Critical for Motor Learning
  • Cortico-Cerebellar Connectivity Underlying Motor Control in Chronic Poststroke Individuals
  • Spontaneous Spiking Is Governed by Broadband Fluctuations
Show more Research Articles

Cellular/Molecular

  • Dendritic Inhibition by Shh Signaling-Dependent Stellate Cell Pool Is Critical for Motor Learning
  • Dual leucine zipper kinase regulates Dscam expression through a non-canonical function of the cytoplasmic poly(A)-binding protein
  • Selective ablation of Sod2 in astrocytes induces sex-specific effects on cognitive function, D-serine availability, and astrogliosis
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.