Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Stimulus-specific prediction error neurons in mouse auditory cortex

Nicholas J. Audette and David M. Schneider
Journal of Neuroscience 12 September 2023, JN-RM-0512-23; DOI: https://doi.org/10.1523/JNEUROSCI.0512-23.2023
Nicholas J. Audette
1Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David M. Schneider
1Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Comparing expectation with experience is an important neural computation performed throughout the brain and is a hallmark of predictive processing. Experiments that alter the sensory outcome of an animal’s behavior reveal enhanced neural responses to unexpected self-generated stimuli, indicating that populations of neurons in sensory cortex may reflect prediction errors – mismatches between expectation and experience. However, enhanced neural responses to self-generated stimuli could also arise through non-predictive mechanisms, such as the movement-based facilitation of a neuron’s inherent sound responses. If sensory prediction error neurons exist in sensory cortex, it is unknown whether they manifest as general error responses, or respond with specificity to errors in distinct stimulus dimensions. To answer these questions, we trained mice of either sex to expect the outcome of a simple sound-generating behavior and recorded auditory cortex activity as mice heard either the expected sound or sounds that deviated from expectation in one of multiple distinct dimensions. Our data reveal that the auditory cortex learns to suppress responses to self-generated sounds along multiple acoustic dimensions simultaneously. We identify a distinct population of auditory cortex neurons that are not responsive to passive sounds or to the expected sound but that encode prediction errors. These prediction error neurons are abundant only in animals with a learned motor-sensory expectation, and encode one or two specific violations rather than a generic error signal. Together, these findings reveal that cortical predictions about self-generated sounds have specificity in multiple simultaneous dimensions and that cortical prediction error neurons encode specific violations from expectation.

Significance Statement

Audette et. al record neural activity in the auditory cortex while mice perform a sound-generating forelimb movement and measure neural responses to sounds that violate an animal’s expectation in different ways. They find that predictions about self-generated sounds are highly specific across multiple stimulus dimensions and that a population of typically non-sound-responsive neurons respond to sounds that violate an animal’s expectation in a specific way. These results identify specific prediction error signals in the mouse auditory cortex and suggest that errors may be calculated early in sensory processing.

Footnotes

  • The authors declare no competing interests.

  • We thank Alessandro La Chioma, Ralph Peterson, and Grant Zempolich for their thoughtful comments on the manuscript. We thank members of the Schneider lab for fruitful discussions. We thank Jessica A Guevara for expert animal care and technical support. This research was supported by the National Institutes of Health (1R01-DC018802 to DMS); a Career Award at the Scientific Interface from the Burroughs Wellcome Fund (D.M.S); fellowships from the Searle Scholars Program, the Alfred P. Sloan Foundation, and the McKnight Foundation (D.M.S.); and an investigator award from the New York Stem Cell Foundation (D.M.S). D.M.S. is a New York Stem Cell Foundation - Robertson Neuroscience Investigator.

SfN exclusive license.

Back to top
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Stimulus-specific prediction error neurons in mouse auditory cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Stimulus-specific prediction error neurons in mouse auditory cortex
Nicholas J. Audette, David M. Schneider
Journal of Neuroscience 12 September 2023, JN-RM-0512-23; DOI: 10.1523/JNEUROSCI.0512-23.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Stimulus-specific prediction error neurons in mouse auditory cortex
Nicholas J. Audette, David M. Schneider
Journal of Neuroscience 12 September 2023, JN-RM-0512-23; DOI: 10.1523/JNEUROSCI.0512-23.2023
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Expectation cues and false percepts generate stimulus-specific activity in distinct layers of the early visual cortex Laminar profile of visual false percepts
  • Acute ethanol modulates synaptic inhibition in the basolateral amygdala via rapid NLRP3 inflammasome activation and regulates anxiety-like behavior in rats
  • Haploinsufficiency of Shank3 in mice selectively impairs target odor recognition in novel background odors
Show more Research Articles

Systems/Circuits

  • Expectation cues and false percepts generate stimulus-specific activity in distinct layers of the early visual cortex Laminar profile of visual false percepts
  • Haploinsufficiency of Shank3 in mice selectively impairs target odor recognition in novel background odors
  • Widespread and Multifaceted Binocular Integration in the Mouse Primary Visual Cortex
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.