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Abstract 45 

Working memory (WM) maintenance relies on multiple brain regions and inter-46 

regional communications. The hippocampus and entorhinal cortex (EC) are thought to 47 

support this operation. Besides, EC is the main gateway for information between the 48 

hippocampus and neocortex. However, the circuit-level mechanism of this interaction 49 

during WM maintenance remains unclear in humans. To address these questions, we 50 

recorded the intracranial electroencephalography (iEEG) from the hippocampus and 51 

EC while patients (N=13, 6 females) performed WM tasks. We found that WM 52 

maintenance was accompanied by enhanced theta/alpha band (2-12 Hz) phase 53 

synchronization between the hippocampus to the EC. Granger causality and phase 54 

slope index analyses consistently showed that WM maintenance was associated with 55 

theta/alpha band-coordinated unidirectional influence from the hippocampus to the 56 

EC. Besides, this unidirectional inter-regional communication increased with WM 57 

load and predicted WM load during memory maintenance. These findings 58 

demonstrate that WM maintenance in humans engages the hippocampal-entorhinal 59 

circuit, with the hippocampus influencing the EC in a load-dependent manner. 60 

 61 

 62 
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Significance Statement 64 

Hippocampus is known to be part of the working memory (WM) network. How does 65 

the hippocampus communicate with other brain regions to maintain WM information? 66 

Rodent studies suggest that hippocampal-entorhinal communication supports WM 67 

maintenance. However, it remains unclear whether and how the human hippocampus 68 

and EC coordinated during WM tasks. In this study, by combining machine learning 69 

analyses with intracranial electroencephalography (iEEG) recordings, we found that 70 

WM maintenance is associated with theta/alpha band (2-12 Hz) unidirectional 71 

influence from the hippocampus to the EC. The unidirectional inter-regional 72 

communication during WM maintenance increased with WM load and predicted WM 73 

load. These findings indicate the hippocampal-entorhinal directional coupling as a 74 

further element of the WM network. 75 

 76 

  77 
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Introduction 78 

Cognition critically depends on the ability to maintain information in an active state 79 

for a short time, which is typically ascribed to working memory (WM)(Baddeley, 80 

2007). Studies found persistent single-neuron spiking (Kaminski et al., 2017; 81 

Kornblith et al., 2017; Boran et al., 2019; Boran et al., 2022) and elevated oscillatory 82 

activity (Li et al., 2022) in the hippocampus during WM maintenance. An increasing 83 

number of studies have pointed out that WM maintenance relies on multiple brain 84 

regions (Christophel et al., 2017) and is supported by inter-regional communication 85 

(Yamashita et al., 2018; Mamashli et al., 2021; Dimakopoulos et al., 2022). Given the 86 

role of hippocampus in WM and the distributed nature of WM, understanding the 87 

connectivity between the hippocampus and the rest of the brain could provide a 88 

crucial insight into the network involved in such a fundamental process. Then, one 89 

may ask how does the hippocampus interact with another/other brain area(s) during 90 

WM maintenance, and which brain area(s) contribute to this process? 91 

 92 

The Entorhinal cortex (EC) is a key candidate to interact with hippocampus for the 93 

following reasons. First, persistent firing during WM maintenance has been 94 

consistently observed in EC neurons across rats (Young et al., 1997), monkeys 95 

(Suzuki et al., 1997) and humans (Boran et al., 2022). Second, the EC serves as an 96 

interface between the hippocampus and cortical/subcortical areas (Lavenex and 97 

Amaral, 2000). Third, structural and functional hippocampal-EC interactions have 98 
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been extensively reported, involving anatomical connections (Rosene and Van 99 

Hoesen, 1977; Small et al., 2011), sensory information transfer, and memory-100 

associated activity feedback (Buzsáki and Tingley, 2018; Rozov et al., 2020). Rodent 101 

studies suggest that hippocampal-EC communication supports WM maintenance, as 102 

evidenced by synchronized oscillations during WM execution (Yamamoto et al., 103 

2014) and WM impairments upon inhibition of this circuit (Suh et al., 2011; 104 

Yamamoto et al., 2014). However, these animal studies have not been validated in 105 

humans, partly due to limitations in noninvasive recording methods' spatial and 106 

temporal resolution. The hippocampal-EC circuit is crucial in spatial navigation 107 

(Zhang et al., 2013), and recent research has extended its involvement to memory-108 

guided behaviors (Squire, 1992). Building on these findings, our study investigates 109 

the role of this circuit in WM, a fundamental cognitive process with broad 110 

implications (Baddeley, 2012). 111 

 112 

If the hippocampal-EC circuit contributes to WM, understanding the neural 113 

mechanisms underlying this process is crucial. Theta/alpha oscillations (2-12 Hz), 114 

commonly observed in the human medial temporal lobe (Fell et al., 2011; Colgin, 115 

2016), have been implicated in WM. Synchronized oscillations are proposed as a 116 

fundamental mechanism supporting inter-regional neural communication (Fell and 117 

Axmacher, 2011), and low-frequency phase synchronization between the 118 

hippocampus and cortex has been reported during WM maintenance, increasing with 119 
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WM load (Boran et al., 2019; Dimakopoulos et al., 2022). Granger Causality (GC) 120 

and phase slope index (PSI) are popular techniques used to estimate the directionality 121 

of inter-regional interactions. Previous research has reported the role of theta/alpha-122 

gamma phase-amplitude coupling (PAC) in WM maintenance (Roux and Uhlhaas, 123 

2014). However, most studies have focused on PAC within a single brain region, like 124 

the hippocampus (Axmacher et al., 2010), with limited inter-regional exploration 125 

(Wang et al., 2021). Theta-gamma interactions have been observed in hippocampal-126 

EC communication in rodent studies (Buzsáki, 2002; Hasselmo et al., 2002). The 127 

involvement of inter-regional low-frequency synchronization and cross-frequency 128 

coupling in the hippocampal-EC circuit during WM processing remains unclear. 129 

 130 

Leveraging the high spatiotemporal resolution of iEEG recordings and the analytical 131 

power of multivariate machine-learning analysis, we tested the hypothesis that low 132 

frequency and gamma oscillations cooperatively facilitate hippocampal-EC 133 

interactions to support the maintenance of WM information in humans. We 134 

simultaneously recorded iEEG data from the hippocampus and EC in 13 epilepsy 135 

patients while they performed a modified Sternberg task (Michels et al., 2008; Boran 136 

et al., 2019; Li et al., 2022). Our goal was to address the following questions: (a) Do 137 

the hippocampus and the EC interact while humans perform a WM task? (b) Which 138 

specific oscillatory modes of interregional communication, including frequency and 139 
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directionality, mediate WM maintenance? And (c) Do these interaction modes have 140 

functional effects? 141 

 142 

Materials and methods 143 

Participants 144 

We used data from 13 adult human patients (mean ± SD [range]: 35±13 [18-56]; 6 145 

females) in this study. All patients were implanted with depth electrodes (1.3 mm 146 

diameter, 8 contacts of 1.6 mm length, and 5 mm spacing between contact centers; 147 

Ad-Tech, Racine, WI, www.adtechmedical.com) in the medial temporal lobe for 148 

evaluation of the surgical treatment of epilepsy. Electrode placement was exclusively 149 

guided by clinical needs. There were no seizures recorded during any of the recording 150 

sessions, and any trials with interictal epileptiform activity were excluded from 151 

analysis. All patients provided written informed consent before participating. This 152 

study has been approved by the relevant institutional ethics review board (Kantonale 153 

Ethikkommission Zürich, PB 2016-02055), and is in agreement with the Declaration 154 

of Helsinki. 155 

Experimental design 156 

We used a modified Sternberg task in which the encoding of memory contents, their 157 

maintenance, and their recall were temporally separated (Fig. 1A). Each trial started 158 
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with a fixation period (1 s) followed by the stimulus for 2 s. Participants were 159 

instructed to memorize a set of four, six, or eight letters that were presented at the 160 

center of the screen. The number of letters indicated the memory load. After the 161 

disappearance of the stimulus, the maintenance interval followed (3 s). After 162 

presentation of the probe letter, the participants responded with a button press (“IN” 163 

or “OUT”) to indicate whether the probe was part of the stimulus letter set. After the 164 

response, the participants were encouraged to relax before they initiated the next trial. 165 

The participants performed 50 trials per session, which lasted approximately 10 min. 166 

During the recording period of several days, several participants performed more than 167 

one session of the task up to a total of eight sessions. Table 1 contains detailed 168 

information about the number of trials and sessions for each participant. To eliminate 169 

any potential confusion arising from mixing categories with varying proportions of 170 

incorrect trials, subsequent analyses exclusively utilized trials with correct responses. 171 

Channel localization and selection 172 

Channel localization was performed using postimplantation computed tomography 173 

(CT) scans and structural T1-weighted MRI scans. For each patient, the CT scan was 174 

co-registered to the postimplantation scan, as implemented in the FieldTrip toolbox 175 

(Oostenveld et al., 2011). The channels were visually marked on the coregistered CT-176 

MR images. The channel positions were then normalized to the MNI 152 space and 177 

assigned to specific brain regions using the Brainnetome Atlas (Fan et al., 2016). 178 

Channel positions were verified by the neurosurgeon (L.S.) after merging pre-179 
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operative MRI with postimplantation CT images of each individual patient in the 180 

plane along the electrode (iPlan Stereotaxy 3.0, Brainlab, München, Germany).  181 

 182 

For each participant we analyzed the iEEG from a maximum of three electrodes per 183 

hemisphere targeting the hippocampal head (anterior), the hippocampal body 184 

(posterior), and the entorhinal cortex. Targeted regions and hemispheres varied across 185 

participants for clinical reasons and included the hippocampus in the left (n = 12) and 186 

right (n = 13) hemisphere and the entorhinal cortex in the left (n = 12) and right (n = 187 

11) hemisphere. We selected the two most medial channels on each electrode 188 

targeting the hippocampus or the entorhinal cortex as in previous studies (Oehrn et al., 189 

2014; Pacheco Estefan et al., 2019). The final number of selected channels in each 190 

region for each participant is listed in Table 1. We included only ipsilateral channel 191 

pairs in the analysis. The final dataset contained 87 channels in the hippocampus and 192 

46 channels in the entorhinal cortex across all patients. There were 6.7±1.5 (range 4-193 

8) channels per patient in the hippocampus and 3.5 ± 0.9 (range 2-4) channels per 194 

participant in the entorhinal cortex. Fig.1C presents all recording locations with the 195 

BrainNet Viewer toolbox (Xia et al., 2013) in MATLAB (MathWorks, Natick, MA). 196 

Data acquisition and preprocessing 197 

Intracranial data were acquired using a Neuralynx ATLAS recording system, sampled 198 

at 4 kHz, and analog-filtered above 0.5 Hz. The data were recorded against a common 199 

reference where the outermost electrode contact in temporal cortex served as 200 
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electrical reference. After data acquisition, neural recordings were downsampled to 1 201 

kHz and band-pass filtered from 1 to 200 Hz using the zero-phase delay finite impulse 202 

response (FIR) filter with a Hamming window. Line noise harmonics were removed 203 

using a discrete Fourier transform. The filtered data were manually inspected to mark 204 

any contacts or epochs containing epileptiform activity or artifacts for exclusion and 205 

were then re-referenced. The continuous data were segmented into 8 s trials with a 1 s 206 

fixation period as the baseline, 2 s encoding period, 3 s maintenance period, and 2 s 207 

retrieval period. We here focused on the maintenance period. The trials with residual 208 

artifacts were rejected after visual inspection. In total, we rejected 65 trials with load 4 209 

(5.5%), 36 trials with load 6 (3.9%) and 39 trials with load 8 (5.1%) across all 210 

participants. Preprocessing routines were performed using the FieldTrip toolbox 211 

(Oostenveld et al., 2011) and customized scripts in MATLAB. 212 

Statistical analyses 213 

To assess the significance of a value, we created a null distribution estimated from 214 

1000 permutations on data with scrambled labels using a non-parametric permutation 215 

test. The significance was defined as exceeding the threshold that obtained from the 216 

95th percentile of the empirically estimated null distribution. 217 

  218 

To compare the metrics of phase synchronization, GC, PAC and PSI between two 219 

loads (load 4 vs load 6, load 4 vs load8, load 6 vs load 8), the statistical significance 220 

was then estimated using a permutation test, in which a null distribution was created 221 

by randomly assigning trials into two loads, computing the differences between loads, 222 
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and repeating this procedure 1000 times. We also applied paired t-tests to directly 223 

compared measurements from the two directions within each load condition. Multiple 224 

comparisons were corrected by False Discovery Rate (FDR). P < 0.05 was considered 225 

significant. 226 

 227 

To rule out potential confounding effects of aperiodic activity on WM load, we first 228 

performed separate repeated-measures analyses of variance (ANOVAs) for the 229 

hippocampus and the EC, with a within-group effect of load across the frequency 230 

spectrum. The aperiodic activity was chosen as it captures non-oscillatory effects at 231 

specific frequency, allowing us to examine the precise frequency ranges sensitive to 232 

load effect on non-oscillatory components. Additionally, we applied a linear-mixed 233 

effect model to explore whether the aperiodic activity from the hippocampus and the 234 

EC contributed to the hippocampus-EC interaction, with load, the aperiodic activity as 235 

fixed factors, and participants as a random factor, and the electrophysiological 236 

indexes as dependent variables. 237 

 238 

For all the decoding analyses, we used a non-parametric permutation approach to test 239 

the significance of the accuracy values. We created a null distribution of the decoding 240 

accuracy by shuffling the data labels 1000 times. For each decoding analysis, the null 241 

distribution was generated for each test and we took the maximum value of the null 242 

distributions across tests as a final null distribution for multiple corrections, as 243 

previous study did (Mamashli et al., 2021). The averaged decoding accuracy 244 

exceeding the 95th percentile of such null distribution (p < 0.05) was considered 245 

significant.  246 
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Time-frequency analysis 247 

Time-frequency power was separately computed within the hippocampus and the EC 248 

for trials with different WM loads. For each trial and each channel, we convolved the 249 

signal with complex-valued Morlet wavelets (6 cycles) to obtain power information at 250 

each frequency from 1 to 100 Hz (in steps of 1 Hz) with a time resolution of 1 ms. 251 

The task-induced power was analyzed per trial using a statistical bootstrapping 252 

procedure (methods have been described in more detail in our previous publication 253 

(Li et al., 2022)). Then, the raw power for each time point during the task was z-254 

scored by comparing it to the null distribution to generate the z-scored power. For 255 

each participant, the z-scored spectral power in the theta/alpha band was averaged 256 

across the maintenance period within the hippocampus and the EC separately for each 257 

WM load. 258 

 259 

Previous study reported that periodic properties of electrophysiological data are 260 

highly variable, and also coexist with variable and dynamic aperiodic activity 261 

(Donoghue et al., 2020a; Donoghue et al., 2020b; Donoghue and Watrous, 2023). To 262 

exclude possible confounding effect of aperiodic activity on neural oscillations of the 263 

hippocampus and EC, we have adopted a distinct approach by separately 264 

characterizing the aperiodic properties of power spectra originating from both the 265 

hippocampus and the EC, with the Fitting-Oscillations-and-One-Over-F (FOOOF) 266 

toolbox (Donoghue et al., 2020b). We isolated the aperiodic component of power 267 

spectra across the entire frequency spectrum for each load and region, and compared 268 
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these components among WM load for each region with the repeated-measures 269 

ANOVA.  270 

Phase-locking value 271 

To explore the potential interaction between the hippocampus and the EC during WM 272 

maintenance, we employed phase-locking value (PLV) to assess the degree of 273 

consistency for each channel pair phase relationship independent of their absolute 274 

phases and amplitudes among repeated trials, with PLV = 1 referring to strong phase 275 

synchrony where all trials are synchronized without any variations between two 276 

channels. Using the same parameters of time-frequency analysis, we computed the 277 

PLV in the time-frequency domain from 1-100 Hz during maintenance for each 278 

channel pair within the same hemisphere (one channel from the hippocampus and one 279 

from the EC) for the trials with each WM load.  280 

 281 

To evaluate the statistical significance of PLV, a null distribution was created by 282 

randomly shuffling the trials with load8 for each channel pair and computing the 283 

corresponding PLV spectrogram and repeating the same procedure for 1000 times, as 284 

our previous study did (Boran et al., 2019). Then the null distribution of all channel 285 

pairs was averaged and only the time-frequency PLV above the threshold (95% of the 286 

null distribution) were kept as significant PLV for further analyses. In addition, the 287 

workload-dependent increases in the PLV were subsequently assessed by subtracting 288 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 16 / 57 

 

the PLV for trials with one load from the PLV for another load, and the statistical 289 

significance between two loads was then estimated using a permutation test, as 290 

mentioned in the section of statistical analyses.   291 

Granger Causality analysis 292 

After establishing the phase synchrony, which measures undirected connectivity 293 

between the hippocampus and EC, we proceeded to investigate the directionality of 294 

their interaction using two complementary measures: a frequency-domain GC and 295 

PSI. GC measures the degree to which the signal from a region (i.e., the 296 

hippocampus) can be better predicted by incorporating information from another 297 

signal (i.e., the EC) in a specific frequency band, and vice versa (Zheng et al., 2019). 298 

For each channel pair, the trial-wise mean was subtracted from each trial before fitting 299 

to an autoregressive model and computing the spectral GC. We then used the 300 

Multivariate Granger Causality Matlab Toolbox (Barnett and Seth, 2014) based on the 301 

Akaike information criterion to define the model order for each pair. Based on the 302 

observations from the PLV above, we computed the GC index across 2-12 Hz (in 303 

steps of 0.25 Hz) for both directions (from the hippocampus to the EC and the reverse 304 

direction) with the trials of load 4, load 6 and load 8, separately. To test the statistical 305 

significance of GC, we created a null distribution by randomly shuffling the signal 306 

between the channel pairs 1000 times and averaged the null distribution of all channel 307 

pairs. Only the value above the threshold (95% of the null distribution) was kept as 308 

significant GC for further analyses. For the GC index across 2-12 Hz from the 309 
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hippocampus to the EC as well as the opposite direction, we also applied the 310 

permutation test for comparisons between two loads, as mentioned in statistical 311 

analyses. To rule out the bias of aperiodic activity, with the linear mixed-effect model, 312 

we considered WM load, the aperiodic activity of the hippocampus and the EC within 313 

2-12 Hz as fixed factors, and the participants as a random factor. The hippocampal 314 

driven GC as well as the EC driven GC across 2-12Hz was set as the dependent 315 

variable. 316 

Phase slope index analysis 317 

On the other hand, PSI examines whether the slope of the phase differences between 318 

the channel pairs remains consistent across several adjacent frequency bins (Nolte et 319 

al., 2008). A positive PSI signifies that the channel in the first structure (e.g., 320 

hippocampus) leads the channel in the second structure (e.g., EC), whereas a negative 321 

PSI indicates the reverse. For the trials with WM load, using the FieldTrip toolbox 322 

(Oostenveld et al., 2011), the data segments during maintenance were zero padded 323 

and multiplied with a Hann taper from 2 to 12 Hz with 1 Hz step, from which we 324 

computed the theta/alpha PSI at each channel pair within the same hemisphere in each 325 

participant (i.e., one from the hippocampus and the other from the EC) and pooled all 326 

possible channel pairs between the hippocampus and EC for each participant. To 327 

correct for any spurious results, we randomly shuffled the trials and recomputed the 328 

PSI at each channel pair. This step was repeated 1000 times to create normal 329 

distributions of channel pair-resolved null PSI data.  330 

 331 
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To construct a directional effect of the hippocampus-EC on a population level, we 332 

averaged the raw PSI across channel pairs and participants. Correspondingly, the null 333 

distributions were also averaged across channel pairs and participants. Consequently, 334 

the raw PSI outputs can be compared to the distribution of null PSI to derive a z-score 335 

in the theta/alpha band (for a similar approach, see (Solomon et al., 2019)). To 336 

examine if the null distribution of PSI by randomization is a normal distribution, we 337 

assessed the normality of the null distribution for different WM loads using the 338 

Jarque-Bera test, a widely used statistical test that examines the skewness and kurtosis 339 

of a sample to determine its normality. The null distribution of PSI for load4, load6, 340 

and load8 is normally distributed (Jarque-Bera test: load4, p = 0.13; load6, p = 0.11; 341 

load8, p = 0.50). As a result, raw PSI outputs were z-scored and significant PSI was 342 

thresholded at |z| >1.96, in which the hippocampus leads were defined as z >1.96 and 343 

the EC leads as z <-1.96 as in our previous study (Li et al., 2022; Li et al., 2023b).  344 

 345 

To assess the statistical significance of PSI differentiation for WM load, the 346 

permutation test described previously was also used here to create a null distribution 347 

of PSI differences between two loads. Then the real PSI differences were obtained 348 

between loads and were then compared with the corresponding null distribution to 349 

estimate a z-score with the positive value indicating PSI increase in the high load 350 

condition versus the low load condition.  351 

Cross-regional phase-amplitude coupling   352 

Next, we investigated the cross-regional PAC between the hippocampus and the EC 353 

using the modulation index (MI) (Tort et al., 2010; Vaz et al., 2017), which reflects 354 
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the coordinated activity between brain regions. We first calculated the time series of 355 

phase and amplitude envelope. This was achieved by applying the standard Hilbert 356 

transform to the low-frequency (2-30 Hz) phase, extracted from the hippocampus/EC 357 

channel, using a 2 Hz step. Similarly, the high-frequency (30-150 Hz) amplitude was 358 

obtained from the channel in the other structure (EC/hippocampus) with a 5 Hz step. 359 

Subsequently, we partitioned the continuous phase values of the modulating 360 

frequency into 20 evenly spaced phase bins. For each phase of the low-frequency 361 

modulating signal, we determined the corresponding amplitude of the high-frequency 362 

modulated signal and assigned it to the respective phase bin. To assess this coupling, 363 

we employed the MI that quantifies the disparity in entropy between the computed 364 

phase-amplitude distribution and a uniform distribution using a normalized Kullback-365 

Leibler distance between each pair of low modulating frequencies and high modulated 366 

frequencies.  367 

 368 

To assess the statistical significance of PAC, we generated a null distribution with a 369 

trial shuffling procedure. Specifically, we created shuffled versions by associating the 370 

phase series of trial k with the amplitude series of trial l, with k and l randomly chosen 371 

among the trial numbers. We then generated 1000 surrogate MI values, from which 372 

we could infer the MI chance distribution. To construct a directional effect of PAC on 373 

a population level, we averaged the raw PAC across channel pairs and participants. 374 

Correspondingly, the null distributions were also averaged across channel pairs and 375 
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participants. Consequently, the raw PAC outputs can be compared to the distribution 376 

of null PAC to derive a z-score in the phase and amplitude frequency band. 377 

Significant zPAC was thresholded at |z| >1.96.  378 

 379 

We also examined the relationship between cross-regional theta/alpha-gamma zPAC 380 

and WM load with the permutation tests for comparisons between two loads. 381 

Thresholding was performed at the 95th percentile level, as stated in the statistical 382 

analyses section. Similarly, as done in Granger causality analysis, the linear mixed-383 

effect model was applied to examine the effect of the aperiodic activity on zPAC. 384 

Specifically, we treated WM load, the aperiodic activity of the hippocampus (2-12 385 

Hz) and of the EC (30-100 Hz) as fixed factors, and the participants as a random 386 

factor. The hippocampal theta/alpha phase - EC gamma amplitude zPAC as well as 387 

the opposite direction were set as the dependent variables. We also tested the impact 388 

of phase synchrony to the functional effect of zPAC within the same model, as 389 

previous study conducted (Wang et al., 2021). 390 

Machine learning analyses 391 

In addition to conventional univariate analysis, multivariate analysis detects subtle 392 

load-related distribution pattern changes missed by univariate methods (Grootswagers 393 

et al., 2017), and enhances findings' generalizability and reliability through inter-394 

subject validation (Wang et al., 2020). Therefore, we next investigated whether the 395 
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neural activity and inter-regional communication within the hippocampal-EC circuit 396 

was modulated by WM load. We used the patterns from PLV, GC, zPAC, and z-397 

scored power from the trials with WM load as our features. Here we used support 398 

vector machine (SVM) (Chang and Lin, 2011) as a classifier to classify the WM load 399 

(load 4/6/8). SVM is widely used in decoding analyses in neuroimaging studies 400 

(Mamashli et al., 2021) because of its suitability for analyses with a relatively small 401 

number of samples. It is provided by the COSMOMVPA package (Oosterhof et al., 402 

2016) in MATLAB. And the approach of leave-one-out cross-validation (LOOCV) 403 

was applied to validate the decoding accuracy. Considering the inherent difficulty of 404 

generalizing across different subjects (Poldrack et al., 2009; Poldrack, 2011), leave-405 

one-out cross-validation (LOOCV) is shown to be a suitable method for obtaining 406 

dependable accuracy estimates, especially when working with datasets that have a 407 

restricted number of samples (Wong, 2015). Details of our multivariate pattern 408 

analysis (MVPA) decoding analyses were as follows: 409 

(A) PLV patterns: We considered the theta/alpha (2-12 Hz) PLV patterns between the 410 

hippocampus and the EC during maintenance to investigate whether the phase 411 

synchrony pattern could decode the WM load. For each participant and each load, 412 

there were M features (11 frequency bins × 3000 time bins) converted to a feature 413 

vector. We trained a linear SVM classifier and applied LOOCV at subject level by 414 

splitting the data set of all subjects (N = 14) into a training set from N-1 subjects and 415 

a testing set from the remaining one subject. This process was repeated N times to 416 
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ensure comprehensive validation. For each iteration, we used the feature vectors 417 

labeled as load 4, load 6 and load 8 from the training dataset, which encompassed the 418 

data of N-1 participants. This resulted in a training dataset including (N-1) 419 

participants × 3 sets × M features. Subsequently, we calculated the average 420 

classification accuracy by averaging the results across the N repetitions of the cross-421 

validation procedure. Meanwhile, to reduce the feature dimensionality, principal 422 

component analysis (PCA) was applied to the training data set to keep several 423 

principal components (K components) that explained 99% of the variance in the data. 424 

We also applied the K components matrix on the remaining data set from one 425 

participant and tested the SVM classifier. This procedure was replicated N times for 426 

cross-validation. The schematic of the MVPA using the feature patterns is shown in 427 

Fig. 1D. The accuracy of the classifier was averaged across N cross-validations as a 428 

measure of performance. To test the significance of the accuracy, we created a null 429 

distribution by shuffling the training labels 1000 times. And the averaged decoding 430 

accuracy exceeding the 95th percentile of the null distribution (p < 0.05) was 431 

considered significant. 432 

(B) GC patterns: We considered the GC patterns from two directions, from the 433 

hippocampus to the EC and the reverse direction, to allow us to investigate whether 434 

there was a specific information flow pattern that could decode the WM load. The GC 435 

patterns were calculated in the theta/alpha band separately for trials with different 436 

WM load. For each participant and each load, the GC pattern included M values (M = 437 

41) and these values were converted into a feature vector. As described above, we 438 
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used the feature vectors labeled as load 4, load 6 and load 8 from N-1 participants as a 439 

training data set (N-1 × 3 sets × M features) and tested these on the remaining one 440 

participant data set. Similar to the LOOCV performed in the previous analysis, we left 441 

one participant out for validation and replicated this procedure N times. The accuracy 442 

of the classifier was averaged across all replications. In total, we separately performed 443 

this classification process for the 2 directions: for the hippocampus modulating the EC 444 

and for the EC modulating the hippocampus. Similar to the PLV patterns, we 445 

generated a null distribution with each direction of GC patterns and took the 446 

maximum value of the two null distributions as the final null distribution for multiple 447 

corrections, as previous study did (Mamashli et al., 2021). The averaged decoding 448 

accuracy exceeding the 95th percentile of the null distribution (p < 0.05) was 449 

considered significant. 450 

(C) Z-scored PAC patterns: We calculated the theta/alpha phase-gamma band zPAC 451 

between the hippocampus phase modulating the EC amplitude and the opposite 452 

direction differences for the trials of load 4, load 6 and load 8 separately. For each 453 

participant and each load, there were M features (11 phase bins × 36 amplitude bins) 454 

converted to a feature vector. Similar as described for the PLV patterns, we combined 455 

N-1 participants’ data set from trials with WM load as training data set, applied zPCA 456 

to the training data set to K components that explained 99% of the variance, fed the 457 

features (N-1 × 3 sets × K components) into a linear SVM classifier and trained the 458 

classifier, and tested it on the remaining one participant data set that already applied K 459 

components matrix to the testing data set. The accuracy of the classifier was averaged 460 

across N replications. To test the significance of the accuracy, we created a null 461 

distribution by shuffling the training labels 1000 times. And the averaged decoding 462 
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accuracy exceeding the 95th percentile of the null distribution (p < 0.05) was 463 

considered significant. 464 

(D) Z-scored power patterns: To address whether local activity in the hippocampus 465 

and the EC contributed to WM load, we used a frequency specific z-scored power 466 

pattern at the theta/alpha band (2-12 Hz, 11 frequency bins) during maintenance from 467 

the hippocampus and EC to decode the WM load. The training data set for the linear 468 

SVM classifier from N-1 participants (N-1 × 3 sets × M features) and the classifier 469 

was tested on the remaining one participant data set. The accuracy of the classifier 470 

was averaged across N replications by LOOCV. We performed 2 classifications (2 471 

regions) in this decoding analysis and the statistical analysis was performed aligns 472 

with the above analyses. 473 

 474 

Results 475 

Task, behavior and recording channels 476 

Thirteen patients with drug resistant epilepsy (6 female) performed a modified 477 

Sternberg WM task during an invasive presurgical evaluation. In this task, the items 478 

were presented simultaneously rather than sequentially, thus separating the encoding 479 

period from the maintenance period. In each trial, the participant was asked to 480 

memorize a set of four, six, eight letters presented for 2 s (encoding). The number of 481 

letters was thus specific for the memory load (load4, load6 and load8). After a delay 482 

(maintenance) period of 3 s, a probe letter was presented and the participant 483 
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responded whether the probe letter was identical to one of the letters held in memory 484 

(retrieval) (Fig. 1A). Across all sessions, participants’ averaged capacity was 7.2, 485 

calculated by Cowan’s formula (Cowan, 2001), which indicated that the participants 486 

were able to maintain about 7 letters in memory. The response accuracy of the 487 

participants decreased from load4 (mean ± S.D.: 97.89% ± 1.90%) to load6 488 

(91.03% ± 5.49%) and to load8 (85.49% ± 6.11%) (repeated-measures analysis 489 

of variance (ANOVA), F(2,24) =36.55, p <0.001, Fig. 1B). This finding indicates that 490 

the behavioral performance of participants was modulated by WM load. The response 491 

accuracy for each participant is listed in Table 1. We recorded local field potentials 492 

from depth electrodes implanted in the hippocampus and the EC (Fig. 1C) while 493 

participants performed the task. Across all participants, 87 channels in the 494 

hippocampus and 46 channels in the EC were included in the subsequent analysis (see 495 

the details in Methods). 496 

Theta/alpha synchronization in the hippocampal-entorhinal circuit as a function 497 

of WM load 498 

To explore the potential interaction between the hippocampus and the EC during WM 499 

maintenance, we employed phase locking values (PLVs) to assess the coherence of 500 

phase relationships among each channel pair connecting the two regions. The PLV up 501 

to 100 Hz was computed in the time-frequency domain to reveal the dynamic 502 

fluctuations of the functional connectivity. As shown in Fig.2A, the phase 503 

synchronization up to 12 Hz (permutation test, p < 0.05) was found significantly 504 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 26 / 57 

 

between the hippocampus and the EC throughout the entire maintenance period 505 

regardless of WM load. And this finding was confirmed by the spectral PLV across 506 

the time domain, which the real phase synchronization of hippocampal-EC was 507 

existed in the theta/alpha band (2-12 Hz; Fig.2B, gray area) that exceeded the 508 

threshold from the permutation test on the PLV with trials of load8 (Fig.2B, black 509 

line). To examine whether the theta/alpha PLV was increased with WM load increase, 510 

we made a cluster-based permutation test on the theta/alpha PLV between two load 511 

conditions for the time-frequency space across participants. As presented in Fig.2C, 512 

the theta/alpha PLV in the high load condition (load6/8) was higher relative to the low 513 

load condition (load4) during maintenance (cluster-based permutation, p < 0.05), 514 

which demonstrated consistent frequency effects during maintenance. To confirm 515 

whether the theta/alpha PLV was modulated by WM load, we separately calculated 516 

the theta/alpha PLV for load 4, load 6 and load 8 and compared the PLV between 517 

loads using a permutation test with FDR correction. Results also indicated that the 518 

theta/alpha PLV was larger in the higher load conditions than in load4 (FDR 519 

corrected: load4 vs load6, p = 0.0042; load4 vs load8, p = 0.006; load6 vs load8, p = 520 

0.15; Fig.2D).  521 

 522 

Next, we investigated whether inter-regional phase synchronization predicts WM 523 

load. Support vector machine (SVM) classifiers show good generalization 524 

performance for high dimensional data and have been widely used for classifying 525 
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scalp EEGs (Kumar and Gupta, 2021) and have recently been successfully used for 526 

classifying magnetoencephalography signals (Mamashli et al., 2021). Hence, we used 527 

a linear SVM classifier here to decode WM load (load 4, load 6 or load 8) on the 528 

participant level with theta/alpha PLV as features (Fig. 1D). Previous studies 529 

suggested that leave-one-out cross-validation (LOOCV) is applicable to obtain a 530 

reliable accuracy estimate for a classification algorithm when the number of sample in 531 

a data set is small (Wong, 2015). Thus, we applied LOOCV by splitting the data set of 532 

all participants (N = 13) from WM load into a training set of N-1 participants and a 533 

testing set of the remaining one participant, and then replicated this procedure by N 534 

times. An average decoding accuracy was obtained across all cross-validations (N 535 

times) for the classification of WM load. The statistical significance of the 536 

classification accuracy was determined by comparing the original accuracy with a null 537 

distribution created by using a randomized classifier by permuting the labels 1000 538 

times (see details in Methods). As shown in Fig.2E, decoding accuracy using the 539 

theta/alpha PLV features for WM load (41.03% ± 4.05%) was significantly above 540 

chance level (permutation test against scrambled labels, p < 0.05). These results 541 

suggest that the theta/alpha PLV between the hippocampus and the EC can predict 542 

WM load for individual participants. 543 JN
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Directional information transfer from the hippocampus to the EC carries 544 

information on WM load 545 

To further examine the functional relevance of directionality in the hippocampal-EC 546 

synchronization, we applied a frequency-domain GC analysis to quantify the inter-547 

regional directional influence. We separately computed the spectral GC index in the 548 

theta/alpha band for trials with load4, load6 and load8 between the hippocampus and 549 

the EC during maintenance. Then, we examined the association between WM load 550 

and the information flow from the hippocampus to the EC and from the opposite 551 

direction, separately, using the permutation test with FDR correction. As presented in 552 

Fig. 3A, the GC index from the hippocampus was larger in load8 condition than in 553 

load4 (FDR corrected: load4 vs load6, p = 0.056; load4 vs load8, p = 0.012; load6 vs 554 

load8, p = 0.30). While there was no load effect on information transfer for the 555 

opposite direction (all ps>0.05). Moreover, no significant differences in information 556 

flow between the hippocampus and EC were observed for all load conditions (paired 557 

t-tests, all ps > 0.05). 558 

 559 

We next investigated whether the directional information flow between the 560 

hippocampus and the EC could predict WM load. The GC index in the theta/alpha 561 

band from both directions were calculated as features to decode the WM load. As 562 

shown in Fig. 3B, WM load could be decoded by using the GC features from the 563 

hippocampus to the EC (43.59% ± 5.83%; permutation test against scrambled labels, 564 
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p < 0.05) but not in the opposite direction (41.03% ± 5.54%; p > 0.05). These results 565 

provide evidence at the level of individual participants that WM load affected the 566 

theta/alpha directional information transfer from the hippocampus to the EC.  567 

 568 

Given that the GC analysis is sensitive to the signal-to-noise ratio across frequency 569 

bands (Cohen, 2014), we confirmed the directionality between the hippocampus and 570 

the EC by calculating the phase slope index (PSI) (Nolte et al., 2008) in the 571 

theta/alpha band (2-12 Hz). Fig.3C presents the z-scored PSI in the theta/alpha band 572 

for the load 4, load 6 and load 8 conditions. The z-scored PSI differed between the 573 

low (load4) and high loads (load6/load8). In particular, the hippocampus-driven 574 

information flow was larger in load6 and load8 than the load4 condition (permutation 575 

test: load4 vs load6, z = 2.29, p = 0.022; load4 vs load8, z = 3.02, p = 0.0025; FDR 576 

corrected). These results confirm the findings from the GC analysis. Together they 577 

indicate that the hippocampus-driven information transfer carries the information of 578 

WM load. 579 

Cross-regional phase-amplitude coupling within the hippocampal-entorhinal 580 

circuit predicts WM load 581 

Cross-regional PAC serves as a mechanism for organizing brain activity across 582 

regions. Therefore, we performed cross-regional PAC in both phase-amplitude 583 

combinations (low-frequency phase from the hippocampus and high-frequency 584 
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amplitude from the EC, and vice versa) using a modulation index (MI) (Tort et al., 585 

2010; Vaz et al., 2017). To remove PAC expected by chance, the raw PAC was z-586 

scored against surrogate distributions across channel pairs and participants on a 587 

population level (see Methods for details), as previous studies did (Solomon et al., 588 

2019). As presented in Fig.4A, there was evident zPAC (|z| > 1.96) between the 589 

theta/alpha phase of the hippocampus and the gamma amplitude of the EC for each 590 

load, while no significant coupling was found in the opposite direction (|z| < 1.96, 591 

Fig.4B). Thus, we extracted hippocampal theta/alpha phase – EC gamma amplitude 592 

zPAC for further analyses. 593 

 594 

To examine the association between cross-regional zPAC and WM load, we compared 595 

theta/alpha-gamma zPAC under different load conditions. Results showed stronger 596 

hippocampal theta/alpha phase – EC gamma amplitude zPAC in the high load 597 

condition (load6/8) compared to load4 (permutation test: load4 vs load6, p = 0.047; 598 

load4 vs load8, p = 0.046; load6 vs load8, p = 0.61; Fig.4C). Given the significant 599 

theta/alpha PLV findings, we added theta/alpha PLV as a regressor to examine 600 

whether it contributed to the functional effect of hippocampal theta/alpha phase – EC 601 

gamma amplitude zPAC, as previous study did (Wang et al., 2021). Our analyses 602 

revealed that the effect of WM load on zPAC was still significant (linear mixed-603 

effects model: p = 0.011, t = 2.71), when controlling for the PLV (p = 0.16). Our 604 
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findings indicated that the load effect on hippocampal theta/alpha phase – EC gamma 605 

amplitude zPAC could not be explained by PLV differences. 606 

 607 

Additionally, we fed the hippocampal theta/alpha phase – EC gamma amplitude zPAC 608 

features into the linear SVM classifier to decode the WM load. We found that the 609 

decoding accuracy using cross-regional zPAC with the theta/alpha phase of the 610 

hippocampus modulating the gamma amplitude of the EC reached a significant level 611 

(51.28% ± 8.12%; permutation test against scrambled labels, p < 0.05, Fig.4D). These 612 

results are in line with the univariate analysis. 613 

Effect of WM load on inter-regional interaction between the hippocampal 614 

subregion and EC 615 

The hippocampus, a complex structure, comprises anterior and posterior subregions 616 

that exhibit distinct function during WM maintenance (Li et al., 2022). Consequently, 617 

we performed separate analyses for the anterior hippocampus-EC and posterior 618 

hippocampus-EC connections. Utilizing permutation tests with FDR correction, we 619 

compared the metrics of PLV, GC, and PAC between different WM loads. Regarding 620 

the theta/alpha PLV between the anterior hippocampus and the EC, we found a 621 

significantly higher PLV in load 8 compared to load 4/6 (FDR corrected: load4 vs 622 

load8, p = 0.036; load6 vs load8, p = 0.045; Fig.5A top). For the theta/alpha PLV 623 

between the posterior hippocampus and the EC, we observed a higher PLV in load 6/8 624 

than load 4 (FDR corrected: load4 vs load6, p = 0.007; load4 vs load8, p = 0.007; 625 
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load6 vs load8, p = 0.86; Fig.5A bottom). Regarding the theta/alpha GC index 626 

between the anterior hippocampus and the EC, we found a higher GC value from the 627 

anterior hippocampus to EC in the high load conditions compared to the low load 628 

condition (FDR corrected: load4 vs load6, p = 0.076; load4 vs load8, p = 0.044; load6 629 

vs load8, p = 0.43; Fig.5B top). However, in the opposite direction, there were no 630 

significant differences observed (permutation test, all ps > 0.05; Fig.5B bottom). 631 

Regarding to the theta/alpha GC index between the posterior hippocampus and the 632 

EC, we did not find any difference between loads in either direction (permutation test, 633 

all ps > 0.05; Fig.5C). For the anterior hippocampal theta/alpha – EC gamma zPAC, 634 

no significant differences between loads were found (permutation test, all ps > 0.05; 635 

Fig.5D top); for the posterior hippocampal theta/alpha – EC gamma zPAC, stronger 636 

coupling in high load condition was found relative to low load condition (FDR 637 

corrected, load4 vs load6, p = 0.026; load4 vs load8, p = 0.047; load6 vs load8, p = 638 

0.56; Fig.5D bottom). In addition, we also directly compared measurements from the 639 

two directions under each load condition using paired t-tests, leading to no directional 640 

difference in any comparison (all ps > 0.05). In summary, our observations indicate 641 

that WM load affects both the anterior and posterior hippocampus in a comparable 642 

manner, which is consistent with the impact of WM load on the connections between 643 

the entire hippocampus and the EC. 644 
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Local Power Analysis for WM Load 645 

The above analyses revealed that the WM load can be decoded by the hippocampal-646 

EC interactions in the theta/alpha band and in the theta/alpha-gamma coupling. We 647 

next asked whether local activity in the hippocampus and the EC indicate WM load. 648 

We calculated the time-frequency power for each channel separately for trials with 649 

load4, 6 and 8. The power outputs were z-scored against the pretrial baseline 650 

distributions to assess the significance of the task-induced power effects per trial (see 651 

Methods). We separately calculated the z-scored power within the hippocampus and 652 

EC in the theta/alpha band for each load in each participant and fed the power features 653 

into the SVM classifier to decode the WM load with LOOCV. As shown in Fig.6A, 654 

no significant results were found for any of the regions for the classification of WM 655 

load (Hipp: 41.03% ± 5.54%; EC: 46.15% ± 6.01%; permutation test against 656 

scrambled labels, p > 0.05). This analysis indicated that the load effects on 657 

hippocampal-entorhinal interaction were not significantly explained by load effect on 658 

the power at hippocampal or entorhinal channels. We would like to stress that these 659 

results do not exclude a role of local activity. 660 

 661 

As previous studies noted (Donoghue and Watrous, 2023), the conventional analytical 662 

approaches concerning neural oscillatory activity have a tendency to conflate periodic 663 

and aperiodic activities. To test whether the impact of aperiodic activity could explain 664 

our observations of functional effects, we first extracted the aperiodic activity using 665 
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FOOOF toolbox (Donoghue et al., 2020b) from the hippocampus and EC for each 666 

load and participant and then conducted a repeated-measures ANOVA with a within-667 

group effect of load across the frequency spectrum. Results indicated that the 668 

aperiodic activity did not exhibit significant differences among WM loads (all ps > 669 

0.05, Fig. 6B). Next, we added the aperiodic activity as a regressor in the analysis of 670 

functional effects of hippocampal theta/alpha phase – EC gamma amplitude zPAC 671 

(see Methods for details). The load was still significant to zPAC (linear mixed-effects 672 

model, p = 0.011, t = 2.71), even when controlling for the aperiodic activity of the 673 

hippocampus in the theta/alpha range (p = 0.43) and of the EC in the gamma range (p 674 

= 0.07). This result validated our previous findings that the modulation of the 675 

hippocampal theta/alpha phase on the EC gamma amplitude carries the load 676 

information. To further rule out the bias of aperiodic activity on the information flow 677 

between the hippocampus and the EC, we did similar analysis for GC index (see 678 

Methods for details). Our finding noted that the effect of load was significantly 679 

associated with hippocampal driven GC (linear mixed-effects model, p = 0.024, t = 680 

2.82), while neither the aperiodic activity from the hippocampus (p = 0.35) nor those 681 

from the EC (p = 0.54) significantly contributed to it. Then, we did a similar analysis 682 

with EC driven GC as dependent variable, none of the effects, including load and 683 

aperiodic activity in either region, reached statistical significance (all ps > 0.05). This 684 

result replicates our previous findings and underscores the influence of WM load on 685 

hippocampal driven GC, even when controlling for aperiodic components. 686 
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  687 

 688 

In summary, WM maintenance was accompanied with elevated synchrony within the 689 

hippocampal-entorhinal interaction, with a theta/alpha coordinated hippocampal-690 

driven influence on the EC. This influence, including information transfer from the 691 

hippocampus to the EC in theta/alpha band and the hippocampal theta/alpha phase 692 

entraining EC gamma amplitude, increased from WM low load (load4) to high load 693 

conditions (load6/8), and predicted WM load (Fig.6C). 694 

 695 

Discussion 696 

We showed that WM maintenance is associated with coordinated neural oscillations 697 

between the hippocampus and the EC in specific oscillatory modes of frequency and 698 

direction. In particular, we observed increased hippocampal driven information 699 

transfer via the theta/alpha band, and increased PAC between the theta/alpha phase of 700 

the hippocampus entraining the gamma amplitude of the EC. This inter-regional 701 

communication during maintenance increased with WM load and predicted WM load. 702 

These findings provided direct neural evidence of hippocampal-EC interactions 703 

during WM maintenance in humans and links a specific inter-regional activity pattern 704 

to WM load. 705 

 706 
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The interregional oscillatory dynamics are consistent with known structural and 707 

functional connections between the hippocampus and the EC. Anatomical studies 708 

found that the EC sends projections to and receives monosynaptic input from the 709 

hippocampus (van Groen et al., 2003; Small et al., 2011). Optogenetic inhibition of 710 

this circuit in mice resulted reduction in both inter-regional connectivity and the 711 

correct execution of WM-guided behavior (Yamamoto et al., 2014). Our results are 712 

thus consistent with animal literature suggesting the contribution of hippocampal-EC 713 

communication to WM processing and extended these findings to humans.  714 

 715 

To investigate this communication, we computed the hippocampal-EC phase 716 

synchronization, a neural mechanism that is thought to enhance neural 717 

communication and plasticity (Fell and Axmacher, 2011; Daume et al., 2023). 718 

Consistent with this notion, previous studies have shown that theta/alpha band phase 719 

synchronization facilitates the recruitment of WM-related regions, including various 720 

cortical areas (Johnson et al., 2018b) as well as the hippocampus and cortical areas 721 

(Boran et al., 2019; Dimakopoulos et al., 2022), thereby supporting WM function. 722 

 723 

To date, only a handful of human studies have collected direct intracranial data on 724 

both the hippocampus and the EC during WM processing, and all looked at each 725 

region separately rather than at their connectivity (Kornblith et al., 2017; Boran et al., 726 

2019; Boran et al., 2022). Considering the evidence for decoding WM load through 727 
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inter-regional interaction in the present study, our findings point to a coordinated role 728 

of the hippocampus and the EC in WM information maintenance. These results 729 

underscore the significance of investigating connections to understand the neural 730 

mechanisms of WM. Our results align with animal findings mapping the non-spatial 731 

dimension of the hippocampal-EC circuit (Aronov et al., 2017). They together suggest 732 

a common circuit mechanism that contribute to diverse behavioral tasks and 733 

supporting cognitive processes beyond spatial navigation. 734 

 735 

Both the GC and PSI measures, despite being based on different principles 736 

(magnitude and phase), consistently demonstrated that the net information flow is 737 

from the hippocampus to the EC during WM maintenance. This is in agreement with 738 

animal results where the hippocampus receives sensory information from the EC 739 

during encoding and subsequently processes and returns memory-related information 740 

(Buzsáki and Tingley, 2018; Rozov et al., 2020).  The hippocampal outflow during 741 

WM maintenance may also contribute to the transfer of memories from short-term 742 

storage in the hippocampus to long-term storage in the neocortex as part of the 743 

memory consolidation process (Frankland and Bontempi, 2005; Kaminski and 744 

Rutishauser, 2020). These findings provide further confirmation of the directional 745 

modulation observed in humans and point to a role of neural oscillations in regulating 746 

this modulation. Recent studies found that memory consolidation may start as early as 747 

at the end of encoding (Ben-Yakov et al., 2013; Zhang et al., 2021). In agreement 748 
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with this, hippocampal outflow during the post-encoding period can decode 749 

subsequent memory performance (Zhang et al., 2021), and WM maintenance 750 

contributes to long-term memory performance (Ranganath et al., 2005; Kaminski and 751 

Rutishauser, 2020). Taken together, our results may have implications in 752 

understanding long-term memory consolidation. 753 

 754 

The theta/alpha oscillations drive inter-regional communication in the hippocampal-755 

EC circuit during WM maintenance. Previous studies reported theta/alpha frequency 756 

synchronization between the hippocampus and cortical regions (Johnson et al., 2018b; 757 

Dimakopoulos et al., 2022) and between cortical regions (Johnson et al., 2018a) 758 

during WM maintenance. Computational models have suggested that these 759 

oscillations coordinate the proper timing of interactions between the hippocampus and 760 

the EC (Kurikawa et al., 2021). Here, we speculate that, during WM maintenance, 761 

task-relevant mnemonic signals are strengthened by theta connectivity, and stronger 762 

distracting signals are suppressed by higher levels of alpha synchronization. Rodent 763 

studies showed that these oscillations in the hippocampal-EC circuit facilitate synaptic 764 

plasticity (Diana et al., 2007; Buzsaki and Moser, 2013; Colgin, 2013). Human iEEG 765 

studies reported that the hippocampal-EC communications via the theta band 766 

contributed to episodic memory (Solomon et al., 2019). We extend these findings to 767 

WM by reporting a load-dependent increase in the hippocampal-EC connectivity. 768 

 769 
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In subsequent analysis involving cross-frequency coupling features, we observed that 770 

WM load was associated with theta/alpha-gamma phase-amplitude couplings (PACs) 771 

in the hippocampal-EC circuit. Previous studies have consistently highlighted the 772 

involvement of rhythmic activity at theta, alpha, and gamma frequencies in WM 773 

maintenance (Bragin et al., 1995; Sarnthein et al., 1997; Axmacher et al., 2007; 774 

Michels et al., 2008; Roux and Uhlhaas, 2014; Daume et al., 2023). Theta-gamma 775 

PAC has been proposed to modulate synaptic plasticity (Huerta and Lisman, 1995) 776 

and organize complex mnemonic information (Heusser et al., 2016), while alpha-777 

gamma PAC has been implicated in the gating of sensory information and read-out of 778 

relevant WM items (Roux et al., 2013; Davoudi et al., 2021). Cross-regional PAC 779 

describes coordinated brain activity between brain regions. However, it is important 780 

to note that the presence of cross-regional PAC does not imply directional causality. 781 

Canolty and Knight (2010) introduced a model explaining how synchronized theta 782 

oscillations and local PAC regulate cortical activity in relation to the hippocampus, 783 

suggesting that inter-regional cross-regional PAC is a secondary outcome of this 784 

cortical organization. Drawing upon the functional roles of local theta/alpha-gamma 785 

PACs mentioned above, we hypothesize that cross-regional PAC may serve as a 786 

mechanism for the formation of an integrated memory representation through precise 787 

coordination of local high-frequency oscillations. Besides, coupling between 788 

hippocampal theta phase and gamma activity in the EC, in the same frequency band 789 

and direction as found in our study, was suggested supporting episodic memory 790 

(Wang et al., 2021). Our study extends this finding to WM and they together imply 791 
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the cross-regional PAC as a key neurophysiological mechanism in mnemonic 792 

processing. 793 

 794 

Besides, we found distinctions in inter-regional interaction patterns between low and 795 

high WM load conditions. This pattern aligns with our earlier research (Boran et al., 796 

2019), which demonstrated that load-sensitive maintenance neurons in the 797 

hippocampus exhibited a plateauing effect at high-load levels rather than showing 798 

incremental increases of firing rates with WM load. However, we do not interpret this 799 

as reflecting a binary relationship between inter-regional connectivity and WM load. 800 

Instead, this observation may suggest the presence of processing capacity limits (von 801 

Allmen et al., 2013), which are closely tied to the concept of workload. We reported 802 

that the averaged capacity was 7.2 (see Results), indicating that participants were 803 

capable of maintaining at least seven letters in memory. However, when attempting to 804 

maintain 8 letters, they may reach or exceed their capacity limits. Consequently, we 805 

might not observe further elevation in inter-regional connectivity. 806 

 807 

In summary, our results provide direct evidence that WM maintenance is supported 808 

by the unidirectional influence from the hippocampus to the EC via the theta/alpha 809 

band in a load-dependent manner. We have extended previous knowledge of the 810 

contribution of the hippocampal-EC circuit on WM in animals to humans. 811 
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 812 

Data availability 813 

The data set was analyzed and described earlier (Boran et al., 2019; Boran et al., 814 

2020; Dimakopoulos et al., 2022; Li et al., 2022; Li et al., 2023a) and is freely 815 

available for download at https://doi.gin.g-node.org/10.12751/g-node.d76994/. The 816 

task is freely available for download at 817 

http://www.neurobs.com/ex_files/expt_view?id=266. Links to updates and further 818 

data sets can be found at https://hfozuri.ch. 819 

 820 
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1 

24 Fema

le 

2 6 

100 92 85 200 (4) 

2 39 Male 4 8 96 81 79 339 (7) 

3 

18 Fema

le 

2 6 

98 94 89 147 (3) 

4 28 Male 4 8 100 94 89 99 (2) 

5 31 Male 4 8 99 91 91 349 (6) 

6 47 Male 4 8 99 92 93 197 (4) 

7 

56 Fema

le 

4 7 

97 96 75 249 (5) 

8 

19 Fema

le 

4 8 

100 94 85 96 (2) 

9 35 Male 4 6 99 92 87 199 (4) 

10 

51 Fema

le 

4 

6 

96 91 86 382 (8) 

11 30 Male 4 4 98 88 78 200 (4) 

12 

29 Fema

le 2 4 

98 100 95 295 (6) 
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13 56 Male 4 8 94 80 80 295 (6) 
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Figure legends 

Fig. 1 Working memory task, recording sites, and schematic of multivariate 

pattern analysis. 

(A) An example trial of the task. Each trial consisted of a set of consonants, including 

four, six or eight letters for 2 s (encoding). The number of letters was thus specific for 

the memory load (load 4, load 6 and load 8). After a delay for 3 s (maintenance, red), 

a probe letter was shown, and the participants indicated whether the probe was or was 

not contained in the stimulus letter set. 

(B) Response accuracy decreased with load 4 (light red), 6 (light green) and 8 (light 

blue) across the group of participants. ** p <0.01. 

(C) Channel locations of all participants in MNI152 space. Recording regions are 

indicated by different colors (red, hippocampus; blue, EC). 

(D) Schematic of the multivariate pattern analysis. Phase locking value (PLV), 

Granger causality index (GC), and phase-amplitude coupling (PAC) were calculated 

separately between the Hipp (red) and the EC (blue) for trials with WM load 4, load 6 

and load 8. The patterns of PLV (e.g., theta/alpha PLV), GC (e.g., theta/alpha GC) 

and PAC (e.g., theta/alpha-gamma PAC) were separately used to train the support 

vector machine (SVM) classifier to classify the WM load (load 4, load 6 or load 8). 

Specifically, we converted the features to a feature vector (M), fed them into a linear 

SVM classifier, trained the classifier on the data from N-1 participants (N-1 × M), and 

tested it on the remaining one participant (1 × M). We used inter-participant cross 

validation by leaving one participant out for validation and replicated the 

classification. The accuracy was used as the performance metric. 
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Fig. 2 Frequency-specific hippocampus-EC phase locking value (PLV) during 

maintenance is load sensitive. 

(A) Phase synchrony (PLV) between the hippocampus and the EC was identified 

across all participants for the load 4 (left), load 6 (middle) and load 8 (right) 

conditions, with greater low-frequency synchrony during maintenance of WM load. 

The PLV ranged from 0 to 1, with warmer colors indicating higher PLV. The PLV 

maps show the PLV up to 12 Hz that survived the threshold from trials with load8 at p 

< 0.05 (permutation test).  

(B) Spectral PLV across the time domain within 1-100 Hz between the hippocampus 

and the EC across participants for the load 4 (light red), load 6 (light green) and load 8 

(light blue) conditions (SEM shown as shaded area around the mean trace) with peaks 

in the theta/alpha range (2-12 Hz, light gray area) used for subsequent analyses. Black 

line indicates the threshold from the permutation test on the PLV with trials of load8. 

(C) Significant increase in the PLV with trials of load6 (left panel) and load8 (right 

panel) related to the PLV with trials of load4 in the theta/alpha (2-12 Hz) frequency 

range during maintenance (cluster-based permutation, p<0.05). Warmer color denotes 

the work-load increase in the time-frequency space of PLV. 

(D) Theta/alpha PLV of the hippcampus-EC across all participants in load 4, load 6 

and load 8. The synchronization was larger in higher loads than in load 4. ** p < 0.01. 
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(E) Decoding accuracy based on the theta/alpha PLV features between the 

hippocampus and the EC. The left panel shows the null distribution of the statistic for 

the decoding analysis, which were created using classifiers with randomized training 

labels. The threshold of significance is marked with a vertical dashed line (p < 0.05). 

The right panel shows the decoding accuracy for WM load by using the theta/alpha 

PLV, the accuracy was above the threshold (horizontal dashed line, labeled with 

asterisk, * p <0.05).  
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Fig. 3 Information flow between the hippocampus and the EC reflects WM load. 

(A) Averaged GC index in the theta/alpha band from the Hippocampus to the EC 

(left) as well as from the opposite direction (right) across all participants for load4 

(light red), load6 (light green), and load8 (light blue). Higher WM load was associated 

with increased GC from the hippocampus to EC, but not in the opposite direction. * p 

< 0.05, # 0.05 < p < 0.1. 

(B) Decoding accuracy using the GC features from the hippocampus to the EC (red) 

and from the opposite direction (blue), respectively. The left panel shows the null 

distribution of the maximum statistics for theses decoding analyses, which were 

created using classifiers with randomized training labels. The threshold of 

significance is marked with a vertical dashed line (p < 0.05). The right panel shows 

the decoding accuracy using the theta/alpha GC index from both directions. WM load 

could be decoded by using the GC features from the hippocampus to the EC but not in 

the opposite direction. * p <0.05. 

(C) The z-scored phase slope index (PSI) in the theta/alpha band across all 

participants for the load 4, load 6 and load 8 conditions. Positive values indicate that 

the hippocampus leads the EC. The z-scored PSI in the high load conditions (load 6/8) 

is higher than the load 4 condition. ** p <0.01, * p <0.05. 
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Fig. 4 Cross-regional coupling between the hippocampus and the EC.  

(A) Average z-scored PAC between hippocampal phase and EC amplitude, with 

logarithmic frequency scaling on both phase and amplitude axes across participants 

for trials with load4, load6, and load8. Notably, there is conspicuous cross-regional z-

scored PAC between hippocampal theta/alpha (2-12 Hz) phase and EC gamma (30-

100 Hz) amplitude (|z| > 1.96, highlighted in red).  

(B) z-scored PAC depicting EC phase - hippocampus amplitude coupling for trials 

with load4, load6, and load8. In the theta/alpha (2-12 Hz) phase and gamma (30-100 

Hz) frequency range, no significant coupling is evident (|z| < 1.96, represented in 

white). 

(C) Averaged theta/alpha-gamma zPAC across participants from both directions in 

load4 (light red), load6 (light green) and load8 (light blue) conditions. The coupling 

between the hippocampus theta/alpha phase and the EC gamma amplitude was larger 

in the high load conditions (load6/8) than the low load condition (load4). * p < 0.05.  

(D) Decoding accuracy for WM load by using the zPAC features from hippocampal 

theta/alpha phase and EC gamma amplitude. The decoding accuracy (red, right panel) 

reached a significant level (horizontal dashed line in the right panel), which is 95th 

percentile of the null distribution of decoding accuracy (left panel).  
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Fig.5 Inter-regional connectivity between the anterior/posterior hippocampal 

subregion and EC. 

(A) Averaged theta/alpha PLV between the anterior (top panel)/posterior 

hippocampus (bottom panel) and the EC for trials with load4 (light red), load6 (light 

green) and load8 (light blue). ** p < 0.01, * p < 0.05. 

(B) GC value between the anterior hippocampus and the EC. Top panel: the GC value 

from the anterior hippocampus to the EC was higher in the high load condition 

(load6/8, light green/blue) than the low load condition (load4, light red). Bottom 

panel: the GC value from the EC to the anterior hippocampus did not show any 

significant differences between WM loads. * p < 0.05, # 0.05< p <0.1. 

(C) GC values between the posterior hippocampus and the EC. Both the GC value 

from the posterior hippocampus to the EC (top panel) and the GC value from the EC 

(bottom panel) to the posterior hippocampus did not display significant differences 

across working memory loads. 

(D) The zPAC values with the theta/alpha phase of the anterior hippocampus 

modulating the gamma amplitude of the EC (top panel) did not show any differences 

between loads. While the zPAC values with the theta/alpha phase of the posterior 

hippocampus modulating the gamma amplitude of the EC (bottom panel) was higher 

in high load conditions (load6/8, light green/blue) compared to the load 4 condition 

(load4, light red). * p < 0.05. 
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Fig. 6 Hippocampal-entorhinal communications reflects WM load. 

(A) Decoding accuracy for WM load by using the theta/alpha power features within 

the hippocampus (red) and the EC (blue), respectively. The decoding accuracy in 

neither region exceeds the threshold of significance (dashed line, p < 0.05). 

(B) Aperiodic activity across the frequency spectrum from the hippocampus (left) and 

the EC (right). No difference was found among load4 (blue), load6 (green) and load8 

(red). SEM shown as shaded area around the mean trace. 

(C) Schematic of the hippocampal-entorhinal communications for low (top) and high 

(bottom) WM load. Unidirectional hippocampal influence on the EC increased with 

WM load via the theta/alpha band.  
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