Abstract
Previous neuroimaging studies have offered unique insights about the spatial organization of activations and deactivations across the brain, however these were not powered to explore the exact timing of events at the subsecond scale combined with precise anatomical source information at the level of individual brains. As a result, we know little about the order of engagement across different brain regions during a given cognitive task. Using experimental arithmetic tasks as a prototype for human-unique symbolic processing, we recorded directly across 10,076 brain sites in 85 human subjects (52% female) using intracranial electroencephalography (iEEG). Our data revealed a remarkably distributed change of activity in almost half of the sampled sites. Notably, an orderly successive activation of a set of brain regions - anatomically consistent across subjects- was observed in individual brains. Furthermore, the temporal order of activations across these sites was replicable across subjects and trials. Moreover, the degree of functional connectivity between the sites decreased as a function of temporal distance between regions, suggesting that information is partially leaked or transformed along the processing chain. Furthermore, in each activated region, distinct neuronal populations with opposite activity patterns during target and control conditions were juxtaposed in an anatomically orderly manner. Our study complements the prior imaging studies by providing hitherto unknown information about the timing of events in the brain during arithmetic processing. Such findings can be a basis for developing mechanistic computational models of human-specific cognitive symbolic systems.
Significance statement Our study elucidates the spatiotemporal dynamics and anatomical specificity of brain activations across >10,000 sites during arithmetic tasks, as captured by intracranial EEG. We discovered an orderly, successive activation of brain regions, consistent across individuals, and a decrease in functional connectivity as a function of temporal distance between regions. Our findings provide unprecedented insights into the sequence of cognitive processing and regional interactions, offering a novel perspective for enhancing computational models of cognitive symbolic systems.
Footnotes
This work was supported by R01MH109954 from the National Institutes of Mental Health at the National Institute of Health (NIH).
Data sharing plans: The dataset will be shared upon request. All code to preprocess, analyze and visualize the data is available at: https://github.com/LBCN-Stanford/lbcn_preproc
The authors declare no conflict of interest associated with this manuscript.
↵*These authors contributed equally to this work
Jump to comment: