Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Evidence that respiratory phase may modulate task-related neural representations of visual stimuli

Lisa Stetza, Lena Hehemann and Christoph Kayser
Journal of Neuroscience 17 April 2025, e2236242025; https://doi.org/10.1523/JNEUROSCI.2236-24.2025
Lisa Stetza
Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lena Hehemann
Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christoph Kayser
Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We investigate how respiration influences cognition by examining the interaction between respiratory phase and task-related brain activity during two visual categorization tasks. While prior research shows that cognitive performance varies along the respiratory cycle, the underlying neurophysiological mechanisms remain poorly understood. Though some studies have shown that large-scale neural activity reflecting for example changes in the excitation-inhibition balance is co-modulated with the respiratory cycle, it remains unclear whether respiration directly shapes the neural signatures reflecting the encoding of task-specific external signals. We address this gap by applying single-trial multivariate analyses to EEG data obtained in humans (n=25, any gender), allowing us to track how respiration relates to the sensory evidence reflected in this neurophysiological signal. Confirming previous studies, our data show that participant's performance varies with the respiratory phase prior and during a trial. Importantly, they suggest that respiration may directly influence the sensory evidence carried by neurophysiological processes emerging around 300 to 200 ms prior to participant's responses. Hence, respiration and sensory-cognitive processes are not only highly intertwined but respiration may directly facilitate the representation of behaviourally-relevant signals in the brain.

Significance statement Performance in perceptual-cognitive tasks can fluctuate along the respiratory cycle. Previous work supports this by demonstrating the entrainment of neural activity to the respiratory rhythm. Yet, it remains unclear whether respiration also directly shapes the fidelity of task-related neural representations. We here investigate this based on EEG recordings in human volunteers performing visual categorization tasks. Using multivariate decoding we provide evidence that respiration may modulate decision-related neural signatures of the visual stimuli in a manner predictive of behavioral performance. These results strengthen a direct connection between the respiratory rhythm and sensory-cognitive processes, underscoring the role of bodily rhythms in shaping behavior.

Footnotes

  • The authors declare no conflicting interests.

SfN exclusive license.

Back to top
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence that respiratory phase may modulate task-related neural representations of visual stimuli
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Evidence that respiratory phase may modulate task-related neural representations of visual stimuli
Lisa Stetza, Lena Hehemann, Christoph Kayser
Journal of Neuroscience 17 April 2025, e2236242025; DOI: 10.1523/JNEUROSCI.2236-24.2025

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Evidence that respiratory phase may modulate task-related neural representations of visual stimuli
Lisa Stetza, Lena Hehemann, Christoph Kayser
Journal of Neuroscience 17 April 2025, e2236242025; DOI: 10.1523/JNEUROSCI.2236-24.2025
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Sex differences in histamine regulation of striatal dopamine
  • The Neurobiology of Cognitive Fatigue and Its Influence on Effort-Based Choice
  • Zooming in and out: Selective attention modulates color signals in early visual cortex for narrow and broad ranges of task-relevant features
Show more Research Articles

Behavioral/Cognitive

  • Zooming in and out: Selective attention modulates color signals in early visual cortex for narrow and broad ranges of task-relevant features
  • Target selection signals causally influence human perceptual decision making
  • The molecular substrates of second-order conditioned fear in the basolateral amygdala complex
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.