Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Research Articles, Cellular/Molecular

The role of the Ca2+-activated Cl- conductance in the membrane potential and light response of mouse rods

Rikard Frederiksen, Paul J. Bonezzi, Gordon L. Fain and Alapakkam P. Sampath
Journal of Neuroscience 25 April 2025, e1920242025; https://doi.org/10.1523/JNEUROSCI.1920-24.2025
Rikard Frederiksen
1Department of Ophthalmology Stein Eye, Institute Geffen School of Medicine, University of California, Los Angeles Los Angeles, California 90095-7000 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul J. Bonezzi
1Department of Ophthalmology Stein Eye, Institute Geffen School of Medicine, University of California, Los Angeles Los Angeles, California 90095-7000 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon L. Fain
1Department of Ophthalmology Stein Eye, Institute Geffen School of Medicine, University of California, Los Angeles Los Angeles, California 90095-7000 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alapakkam P. Sampath
1Department of Ophthalmology Stein Eye, Institute Geffen School of Medicine, University of California, Los Angeles Los Angeles, California 90095-7000 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To characterize the function of the Ca2+-activated Cl- current ICl(Ca) in mammalian rod photoreceptors, we made patch-clamp recordings from retinal slices of mice (Mus musculus) of both sexes that lack Ano2 (TMEM16B). Depolarizing voltage ramps in solutions blocking K+ currents elicited a large outward current inhibited by the Cl-- channel blocker niflumic acid; this current was absent in Ano2-/- rods. The membrane potential of Ano2-/- rods was 10 – 15 mV more depolarized in darkness than WT or Cx36-/- rods, indicating a substantial resting Cl- permeability. Rod outer segment photocurrents were similar in waveform and amplitude in Ano2-/- and Cx36-/- rods, but photovoltages in Ano2-/- rods were nearly doubled. Measurements of light-response reversal potentials in rods with and without Ano2 suggest that the outer-segment conductance is nearly linear with a reversal potential of -9 mV; and that $$mathtex$$\Delta g_{Cl}$$mathtex$$ increases during the light response. Using these results, we estimated ECl from permeabilized-patch recordings of reversal potentials of Cx36-/- rods to have a mean value of -35 mV near the rod resting potential, but other evidence suggests that ECl may be more positive by as much as 10 - 15 mV. Thus activation of ICl(Ca) during the light response would be depolarizing. At dim intensities, the photocurrents of downstream rod bipolar cells were larger and about twice as sensitive in Ano2-/- retinas with reduced nonlinearity. These experiments show that Ca2+-activated Cl- currents in mammalian rods have more important roles in photoreceptor physiology than previously appreciated.

Significance Statement To characterize the function of the Ca2+-activated Cl- channel in mammalian rods, we recorded from Ano2-/- mice with a disrupted channel gene. We show that these Cl- channels make a surprisingly large contribution to the rod resting permeability. Moreover, measurements of reversal potentials indicate that light produces an increase in Cl- conductance, which can only occur if the Ca2+ concentration near the channels is increasing even as the rod membrane potential is hyperpolarizing. We describe a novel method to make the first measurement of ECl in a mammalian rod, which is near to or somewhat positive of Erest. Thus, channel activation would depolarize the rod. Ca2+-activated Cl- channels have more important roles in mammalian photoreceptor physiology than previously appreciated.

Footnotes

  • We thank Christopher Meredith for help with mice. This work was supported by NIH EY 001844 (GLF), EY29817 (APS), an unrestricted grant to the UCLA Department of Ophthalmology from Research to Prevent Blindness, and the Jules Stein Eye Core Grant EY00331.

  • ↵*These authors contributed equally to the research

SfN exclusive license.

Back to top
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The role of the Ca2+-activated Cl- conductance in the membrane potential and light response of mouse rods
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The role of the Ca2+-activated Cl- conductance in the membrane potential and light response of mouse rods
Rikard Frederiksen, Paul J. Bonezzi, Gordon L. Fain, Alapakkam P. Sampath
Journal of Neuroscience 25 April 2025, e1920242025; DOI: 10.1523/JNEUROSCI.1920-24.2025

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The role of the Ca2+-activated Cl- conductance in the membrane potential and light response of mouse rods
Rikard Frederiksen, Paul J. Bonezzi, Gordon L. Fain, Alapakkam P. Sampath
Journal of Neuroscience 25 April 2025, e1920242025; DOI: 10.1523/JNEUROSCI.1920-24.2025
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Chemogenetic disruption of monkey perirhinal neurons projecting to rostromedial caudate impairs associative learning
  • Specializations in amygdalar and hippocampal innervation of the primate nucleus accumbens shell
  • “What” and “When” Predictions Jointly Modulate Speech Processing
Show more Research Articles

Cellular/Molecular

  • Sex differences in histamine regulation of striatal dopamine
  • A Critical Role of Neuroligin 2 C-Terminus in OCD and Social Behavior
  • Time-Dependent Actions of Corticosterone on Infralimbic Cortex Pyramidal Neurons of Adult Male Rats
Show more Cellular/Molecular
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.