Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Research Articles, Neurobiology of Disease

Threonine-53 phosphorylation of dopamine transporter dictates kappa opioid receptor mediated locomotor suppression, aversion, and cocaine reward

Durairaj Ragu Varman, Sammanda Ramamoorthy and Lankupalle D. Jayanthi
Journal of Neuroscience 20 May 2025, e0171252025; https://doi.org/10.1523/JNEUROSCI.0171-25.2025
Durairaj Ragu Varman
1Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sammanda Ramamoorthy
1Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lankupalle.jayanthi@vcuhealth.org sramamoorthy@vcu.edu sammanda.ramamoorthy@vcuhealth.org
Lankupalle D. Jayanthi
1Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lankupalle.jayanthi@vcuhealth.org sramamoorthy@vcu.edu sammanda.ramamoorthy@vcuhealth.org
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Dynorphin (DYN)/kappa opioid receptor (KOR) activation contributes to aversion, dysphoria, sedation, depression, and enhanced psychostimulant-rewarding effects by inhibiting dopamine (DA) release. The precise neuronal mechanisms underlying these effects remain unclear, limiting the use of KOR agonists in treating mood and substance use disorders. DYN fibers form synapses with DA terminals that express KOR and dopamine transporter (DAT), which is crucial for regulating DA dynamics and related behaviors. Previously, we demonstrated that KOR agonists upregulate DAT activity via ERK1/2 signaling involving phospho-Thr53 DAT (pT53-DAT). However, it remains unclear whether pT53-DAT is involved in KOR-mediated DAT regulation in vivo and whether such a phenomenon contributes to the behavioral effects of KOR agonism. In this study, we utilized male DAT-Ala53 knock-in mice with non-phosphorylatable Ala at position 53 to investigate the role of pT53-DAT in KOR-mediated DAT regulation and its behavioral effects. KOR agonist U69593 increased KOR antagonist-sensitive DAT activity, DAT Vmax, pT53-DAT, and surface expression in WT but not in DAT-Ala53 mice. KOR agonists caused locomotor suppression, conditioned place aversion (CPA), and enhanced cocaine preference (CPP) in WT but not in DAT-Ala53 mice. Conversely, both WT and DAT-Ala53 mice exhibited similar lithium chloride-induced CPA and morphine-induced CPP. These findings provide the first causal evidence that KOR-mediated locomotor suppression, aversive response, and enhancement of cocaine reward manifest through the modulation of DAT activity via DAT-T53 phosphorylation. This suggests that targeting specific DAT-regulatory motif(s) may help develop new KOR-directed therapeutic strategies devoid of adverse effects.

Significance Statement Preclinical and clinical research reveal that cocaine use disorder (CUD) affects mesolimbic dopamine neurotransmission, dopamine transporters (DAT), and DA interactions with the dynorphin (DYN)/kappa opioid receptor (KOR) system. The lack of FDA-approved treatments for CUD highlights a significant gap in our understanding of its neurobiology. While KOR ligands have potential as therapies, their effectiveness is often limited by side effects like aversion, dysphoria. and enhancing cocaine reward. Our study demonstrates that phosphorylation of Thr53 motif in DAT is crucial for KOR-mediated aversion, locomotor suppression, and enhancement of cocaine reward. These findings provide the first neurobiological evidence linking DAT-Thr53 phosphorylation to KOR modulation of DA clearance, highlighting its contribution to adverse behavioral outcomes and opening avenues for effective CUD treatments.

Footnotes

  • The authors declare that they have no competing interests

  • This work was supported by the National Institute of Health RO1 DA054694 (SR and LDJ)

SfN exclusive license.

Back to top
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Threonine-53 phosphorylation of dopamine transporter dictates kappa opioid receptor mediated locomotor suppression, aversion, and cocaine reward
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Threonine-53 phosphorylation of dopamine transporter dictates kappa opioid receptor mediated locomotor suppression, aversion, and cocaine reward
Durairaj Ragu Varman, Sammanda Ramamoorthy, Lankupalle D. Jayanthi
Journal of Neuroscience 20 May 2025, e0171252025; DOI: 10.1523/JNEUROSCI.0171-25.2025

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Threonine-53 phosphorylation of dopamine transporter dictates kappa opioid receptor mediated locomotor suppression, aversion, and cocaine reward
Durairaj Ragu Varman, Sammanda Ramamoorthy, Lankupalle D. Jayanthi
Journal of Neuroscience 20 May 2025, e0171252025; DOI: 10.1523/JNEUROSCI.0171-25.2025
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Change of spiny neuron structure in the basal ganglia song circuit and its regulation by miR-9 during song development
  • Increased neuronal expression of the early endosomal adaptor APPL1 replicates Alzheimer’s Disease-related endosomal and synaptic dysfunction with cholinergic neurodegeneration.
  • Presynaptic mu opioid receptors suppress the functional connectivity of ventral tegmental area dopaminergic neurons with aversion-related brain regions
Show more Research Articles

Neurobiology of Disease

  • Increased neuronal expression of the early endosomal adaptor APPL1 replicates Alzheimer’s Disease-related endosomal and synaptic dysfunction with cholinergic neurodegeneration.
  • Targeting Lysine α-Ketoglutarate Reductase to Treat Pyridoxine-Dependent Epilepsy
  • The Role of Neprilysin and Insulin-Degrading Enzyme in the Etiology of Sporadic Alzheimer's Disease
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.