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A recent report has provided evidence that there are no 
significant increases in the neuronal input conductance dur- 
ing the response of cortical cells in cat visual cortex to non- 
preferred visual stimuli (Douglas et al., 1988). A criticism of 
experiments of this kind is that changes in the membrane 
conductance occurring in the dendritic tree may not be vis- 
ible from electrodes that impale the soma. Our paper de- 
scribes theoretical and numerical results concerning the vis- 
ibility of synaptically induced conductance changes from 
intracellular electrodes, in both ideal and anatomically well- 
characterized cortical neurons. 

Based on earlier work by Rall (1967), we here derive the- 
oretical expressions for the change in input conductance at 
any location in a passive dendritic tree resulting from acti- 
vation of a single synapse and obtain bounds for the effects 
of multiple synapses. We find that the conductance change 
measured at the cell body is always less than the sum of 
the synaptic conductance changes and that this observed 
conductance change does not depend on the synaptic re- 
versal potential. For the case of an infinite dendritic cylinder, 
the change in input resistance due to a single synaptic input 
decays exponentially with distance of the synapse from the 
recording site. Numerical simulations of synaptic inputs that 
change approximately as fast as the membrane time-con- 
stant produce an increase in input conductance that is only 
slightly less visible than that of a constant input. We also 
compute the changes in somatic input conductance of 2 
morphologically identified pyramidal cells from cat visual 
cortex during activity of a single inhibitory basket cell with 
known synaptic input locations. We find that the increase in 
conductance due to the activity of the inhibitory basket cells 
is clearly visible from the cell body of the pyramidal cells 
and that a 70% reduction in the amplitude of excitation is 
associated with at least a 30% increase in somatic input 
conductance, which would be visible in intracellular record- 
ings. 
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Taken together with the negative experimental evidence 
of Douglas et al. (1988), our results cast doubt on a large 
class of models of direction selectivity that rely on synapti- 
cally mediated inhibitory conductance increases to veto or 
block excitatory conductances increases. 

Most theories of neuronal information processing assume that 
temporal patterns of action potentials constitute the major out- 
put variable of nerve cells. The generation of action potentials 
at the initial segment depends on the interplay of excitatory and 
inhibitory synaptic inputs applied to the dendritic tree and cell 
body (Rall, 1964, 1989; Shepherd, 1972; Torre and Poggio, 
1981; Koch et al., 1982; Segev and Pamas, 1983). But what is 
the strategy of synaptic inhibition in the control of neuronal 
discharge? Is its role just broadly permissive, for instance to 
contain cortical excitability, or does inhibition act specifically 
and very selectively to block other synaptic inputs to parts of 
the dendritic tree (Rall, 1964; Blomfield, 1974; Torre and Pog- 
gio, 1978; Koch and Poggio, 1987)? This question has been 
raised in particular for inhibition whose reversal potential is 
close or equal to the resting potential of the cell, i.e., silent or 
shunting inhibition. 

Shunting inhibition is both nonlinear and local in its effect 
(Blomfield, 1974; Torre and Poggio, 1978; Koch et al., 1982, 
1983), and these are crucial properties in a number of models 
that explain the selective nature of neuronal responses. For in- 
stance, Barlow and Levick (1965) proposed that directional se- 
lectivity of retinal ganglion cells is best explained by a veto-like 
operation; i.e., inhibition prevents the cell from responding in 
the null direction by blocking synaptic evoked excitation. Torre 
and Poggio (1978) and Koch et al. (1982, 1983) proposed a 
detailed biophysical implementation of Barlow and Levick’s 
AND-NOT scheme, where shunting or silent inhibition blocks the 
cell’s response in the null direction. Using linear cable theory 
to simulate retinal ganglion cells, they showed that the nonlinear 
interaction between synaptic induced conductance changes has 
the required nonlinearity and locality to subserve directional 
selectivity: an inhibitory synapse of the shunting types located 
either in the neighborhood of an excitatory synapse or on the 
direct path between excitation and the soma can strongly reduce 
the excitatory postsynaptic potential (EPSP) in the soma, pro- 
vided that the size of the inhibitory conductance change is at 
least as large as the synaptic input conductance (Koch et al., 
1982; see also Rall, 1964). Intracellular recordings in turtle di- 
rectional selective ganglion cells (Marchiafava, 1979) revealed 
an inhibitory conductance increase with a reversal potential 
close to the resting potential of the cell, suggesting silent or 
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shunting inhibition. Evidence of nonlinear interactions in these 198 1; Carnevale and Johnston, 1982; Durand, 1984; Fox and 
cells has been obtained from extracellular recordings (Grzywacz Chan, 1985). Based on these studies by Rall and his colleagues, 
and Amthor, 1989). we here lay out the framework for deriving exact upper bounds 

Shunting inhibition was incorporated into models explaining on the “visibility” of changes in the input conductance and their 
the selective responses of cells in the visual cortex to various dependence on various geometrical and biophysical parameters 
stimuli (orientation and directional selectivity: Sillito, 1975; in passive dendritic trees. 
Sillito et al., 1980; Heggelund, 198 la, b; Koch and Poggio, 1986; 
binocular disparity: Ferster, 198 1; Koch and Poggio, 1987). Ex- Analytical Results 
tracellular techniques suggested a nonlinear interaction between Let us first derive the voltage change in a dendritic tree with 
inhibition and excitation (Rose, 1977; Dean et al., 1980). A arbitrary geometry (as long as no loops are present) in response 
number of intracellular studies have reported small inhibitory to synaptic input. We will assume that the membrane contains 
postsynaptic potentials (IPSPs) in response to visual stimulation no active, voltage-dependent components. This approximation 
(Creutzfeldt et al., 1974; and, in particular, Ferster, 1986, 1987), is reasonable if postsynaptic potentials, as well as the voltage 
but did not measure changes in input conductance. However, induced by current injection via the intracellular electrode, re- 
Douglas et al. (1988) have made direct measurements of the main within the linear regime of the neuronal membrane. 
input conductance of neurons in cat visual cortex during visual 
stimulation. They found that there was no significant increase Somatic conductance change in response to a single 
in neuronal input conductance during periods when large in- synaptic input 

hibitory synaptic conductance increases might be expected to In a passive dendritic tree (Fig. 1.4) the current at location i, 
be active, i.e., during motion of a bar in the cell’s null direction I,, due to a synaptic-induced conductance change at location i, 
or for a bar oriented orthogonal to the cell’s optimal orientation. g,(t), with the synaptic reversal potential E, is given by 
Nevertheless, with their techniques they were able to measure 
large conductance increases during electrically evoked IPSPs in z,(t) = g,(W - W)l (1) 
in vitro slices of rat and cat visual cortex (Berman et al., 1989). where V,(t) is the postsynaptic membrane depolarization at lo- 
Thus, their results are inconsistent with theories that depend on cation i. The voltages E and V, are always expressed relative to 
massive inhibitory synaptic input to explain the selective re- the cell’s resting potential E,,,. It follows from Ohm’s law that 
sponses of cortical neurons to visual stimuli. 

There are 2 difficulties with intracellular experiments of this 
kind. First, the evaluation of changes in membrane conductance 

the postsynaptic potential is 

v,(4 = KU) l Z,(t) = K,,(t) * IgME - v,U)li (2) 

due to synaptic input are indirect. Conductance changes are where K,,(t) is the time-dependent input impedance at location 
inferred from recordings of the change in intracellular potential i and l represents convolution. This relationship can be sim- 
evoked by a small current step. This measurement must be plified by assuming that the synaptic conductance change g,(t) 
performed both in the quiescent state and during activation of is much slower than the membrane time constant T,,,, so that 
the synaptic input. Second, the intracellular electrode is usually only the stationary behavior of Eq. (2) need be considered. In 
located at the cell body or in the relatively thick proximal den- this case the convolution can be replaced by a multiplication, 
drites, while the synaptic conductance changes can be located and the function K,,(t) by its steady-state value, denoted here 
on dendritic spines or distal dendrites that are inaccessible to by K,, and corresponding to the steady-state input resistance at 
the recording electrode. How reliably, then, can one conclude location i. Thus, we now have 
that the absence of measurable changes in the input conductance 
implies absence of any large synaptic induced conductance v, = Kg@ - v,) (3) 

changes? In this study, we derive upper bounds on the “visi- or 
bility” of conductance changes from the soma and compute 
examples of interaction between excitatory and inhibitory syn- 
apses using anatomical data obtained from neurons in cat visual 

v = g,KJ 
’ 1 + ML 

(4) 

cortex. 
One of the first explicit attempts to study the transient changes 

in input conductance seen by a recording electrode at the soma 
was made in a series of papers in 1967 (Smith et al., 1967; Rall, 
1967; Rall et al., 1967). Using intracellular recordings in cat 
spinal motoneurons, Smith and colleagues showed that IPSPs 
were invariably accompanied by decreases in the somatic input 
impedance, while less than half the EPSPs studied were asso- 
ciated with detectable input impedance changes (see also Jack 
et al., 1971). Rall (1967) used numerical simulations of the 
underlying cable equation to estimate the detectability of tran- 

If E > E,,,, then an increase in conductance results in a positive 
(depolarizing) PSP. If E < E,,,, then the PSP is negative (hy- 
perpolarizing). Finally, if E = E,,,, then V, = 0. That is, no 
voltage change is observed despite the increase in synaptic con- 
ductance. Such a synapse has been referred to as “shunting” 
inhibition (Torre and Poggio, 1978). However, electrophysiol- 
ogists often refer to shunting inhibition in the context of a large 
conductance “shunting” excitatory current and have less regard 
for whether the synaptic battery reverses at rest or below the 

sient synaptic conductance inputs from somatic recordings. Rall resting potential. In order to avoid any further confusion, we 
et al. attempted to correlate the detectability of impedance refer to inhibition with a reversal potential at the resting po- 
changes with synaptic location, concluding from the above data tential as “silent” inhibition. 
that inhibitory synapses are located at or close to the soma, Let us now assume that the PSP evoked at i is being recorded 
while most of the excitatory synapses are located in the dendritic from some location other than i, for instance at the cell body s 
tree. The insights derived from this work were extended by a (Fig. 1A). Then, the potential induced at the soma, V,, is ob- 
number of authors (e.g., Jack et al., 1975; Carlen and Durand, tained from Ohm’s law, 
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Figure 1. A, The question we are in- 
vestigating is to what extent a synaptic 
induced conductance change g, at lo- 
cation i somewhere in an arbitrary 
branched dendritic tree can be detected 
by an intracellular electrode at the soma 
s. We assume in this study that neither 
the synaptic input nor the electrode de- 
polarizes the cell sufficiently to evoke 
nonlinear membrane responses. B, Our 
idealized neuron consisted of 400 pas- 
sive compartments that represented the 
soma, two 1.2-mm-long main den- 
drites (ofconstant I .5 pm diameter) with 
secondary0.5-pm-thickand lo-pm-long 
dendritic branches. 

(5) 

Here, K,, is the transfer resistance that is measured by injecting 
current at location i and recording the resulting voltage change 
at location s. Transfer resistances have a number of interesting 
properties (Koch et al., 1982), two of which are relevant to the 
present problem. The first of these is symmetry: K, = K$ This 
means that the voltage change observed at location j when the 
current Zis injected at location i is identical to the voltage change 
observed at location i when the same current I is injected at 
location j. Second, the input resistances at 2 separate locations 
i and j, K,, and K,,, are always larger than the transfer resistance 
Ku,., 

The current observed at the soma in response to the synaptic 
event is 

(6) 

where K, is the somatic input resistance. Experimentally, the 
somatic input resistance is obtained by measuring the change 
in membrane potential induced by the injection of a small steady- 
state current 1, via the electrode. This current is small, so that 
the cell remains in its linear range. The quiescent input resis- 
tance, i.e., the input resistance in the absence of any synaptic 
input, is 

K, = ; (7) 
s 

However, when the input resistance is measured in the presence 
of synaptic input, the following 2 linearly coupled equations 
must be solved (Koch et al., 1982): 

v, = g,K,(E - K) + &I, 
K = MAE - v,) + Ws (8) 

Simple algebraic manipulations of these equations result in 

(9) 

3 Note that our definition of the transfer resistance between location 1 and the 
soma s, K,,, is related to, but different from, the electrotonic coupling coefficients, 
K,* and K~, of Camevale and Johnston (1982). Their exact relationship is given by 
K,~ = K,,IK, and K~, = K,,IK,,. 

The first term is identical to the value of the postsynaptic po- 
tential induced by g, in the absence of current injection [Eq. (5)]. 
The second term is proportional to the injected current. As in 
standard electrophysiological practice, the PSP (first term) is 
subtracted to obtain 

y - v, = Ky, (10) 

where e$ is the new somatic input resistance defined as 

The change in input resistance, 

AK, = K$ - K, = - 
1 + g,Ki, 

in response to a synaptic input is thus always negative for an 
increase in membrane conductance (g, > 0). That is, the new 
input resistance is lower than the original value. Equation (12) 
is easily understood. The current Z, injected into the soma in- 
duces a voltage K,,I, at the location of the synapse i. This voltage 
provides a synaptic driving force that converts the synaptic 
input, g,, into a voltage at location i, g,Ki,K,,I,/( 1 + g,K,,), or into 
a voltage change at the soma, g,KiZ,l( 1 + g,K,,). Thus, the higher 
the input resistance at the location of the synapse (K,,), the lower 
the visible change of input resistance at the soma. Similarly, the 
further the synapse i is removed from the soma, the smaller 
AK, (because K,, + 0). Furthermore, for a given synaptic site, 
AK, does not depend linearly on the synaptic conductance change. 
It reaches a limiting value -e/K,, as g, 4 ~0. Thus, even large 
synaptic inputs may not be readily visible if they are located on 
a thin distal dendrite, or on a spine. Note that the new value of 
the input resistance does not depend on the synaptic reversal 
potential. Consequently, hyperpolarizing, silent, or depolarizing 
synaptic conductance changes are all equally visible (or invisi- 
ble) from the recording electrode. The appropriate equations 
for the somatic input conductance are 

(13) 

and 
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with AG, > 0 for g, > 0 and where G, and Gj: denote the values 
of the somatic input conductance in the absence and in the 
presence of synaptic input. 

Synaptic wslbdlty 

In order to characterize in a single number the fraction of the 
synaptic conductance change g, which can in principle be de- 
tected via an intracellular electrode at the soma, we introduce 
the visibility factor T as 

(1% 

Keeping in mind the properties of the transfer resistances, in 
particular, (K,,K,, - K$ 2 0 (Koch et al., 1982), it is relatively 
straightforward to show that for g, > 0, 

oZSrYS1 (16) 1 
. , 

That is, the maximum increase in somatic input conductance 
is bounded by the synaptic conductance change. If the synaptic 
input is located at the soma, we have T = 1; the further the 
synaptic input is removed from the soma, the smaller the ob- 
served change in somatic conductance and T + 0. Note that r 
represents an upper bound on the synaptic visibility, because 
noise considerations and the quality of the intracellular im- 
palement (see below) will further limit the “detectability” of any 
synaptic input. 

The visibility of synaptic input as a function of distance be- 
tween synapse and electrode can be assessed for the case of an 
infinite passive dendrite of constant diameter d (see also Rall, 
1967). In this case, the transfer resistance is simply K,, = K,pmx 

I -11 
(Jack et al., 1975), where X is the electrotonic distance between I 

the current injecting electrode and the synapse, X = x/X, with 
the length constant X = (dR,MRJyz and the input resistance 

Figure 2. The visibility r, defined in Eq. (15) as the ratio of the change 

K,, = [R,R,,l(+d3)]‘h with R, the intracellular resistivity (in 0 cm) 
in somatic input conductance AC to the synaptic input g, (here g, = 1 
nS) in an infinite dendrite of constant diameter (d = 1.5 pm) as a function 

and R,, the membrane resistance (in Q cm*). Thus, the change of the electrotonic distance x/X. 

in somatic input resistance is 

tis5 = ;be;; 
(17) 

I II 

and the visibility 
this situation by adding a conductance GICaI, to the cell body so 
that the new somatic input conductance is given by G:;- = G, 
+ Geak. The leak conductance has a reversal potential E, positive 

r= 
e-zx 

1 + g,K,,(l - emzX) (18) to the resting potential, i.e., E, > 0. We modify Eq. (8) as follows: 

v, = g,K,(E - v,) + K,J, + G,,,K,(Eo - W 

This result shows that the change in somatic input resistance 
decays exponentially with a space constant of X/2 and that the 
decay is not dependent on reversal potential. The factor i/z arises 
from the fact that the current injected at s must propagate to 
the site of the synapse i and then propagate back to the voltage- 
recording electrode at s (see Fig. 2). For a typical dendrite (see 
below) with R, = 100 Q, R, = 10,000 Q cm2 and d = 1.5 pm, 
we have K,, = 173 MQ and X = 6 12 Hrn. We plot in Figure 2 
the visibility T associated with a small synaptic input (g, = 1 
nS) for such an infinite cable. Note that in this case l? is ap- 
proximately proportional to emzx. 

Effect of somatic leak 

How are these results affected by possible damage to the somatic 
membrane due to impalement by the electrode? We can model 

v: = g,K.~@ - v,) + Us + G,.&,(Eo - v:) (19) 

Appropriate algebraic manipulations lead to the result that the 
new value of the somatic conductance (slope conductance) dur- 
ing the synaptic input is just 

1 + g,K, 
@? = K, + g,(KJ,, - K;,) + G1cak (20) 

that is, the sum of the input conductance in the absence of the 
leak plus Gleak. Moreover, an offset current, proportional to G,,,& 
will flow. Thus, the absolute change in somatic input conduc- 
tance, AG,, is independent of the leak caused by the electrode. 
Of course, the change in somatic input conductance relative to 
the somatic input conductance (i.e., AGiG:) will decrease in the 
presence of the leak. 
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Somatic conductance change in response to multiple 
synaptic Inputs 

So far we have only considered the case of a single synaptic 
input. In practice, however, a large number of synaptic inputs 
are likely to be activated during a response to physiological 
input, and so the neuron is subjected to a complex barrage of 
excitation and inhibition. The synaptic conductance inputs in- 
teract nonlinearly (Rail, 1964; Terre and Poggio, 198 l), and the 
resulting membrane potential is not the linear sum of the in- 
dividual synaptic contributions to the somatic potential, but is 
smaller. Nonlinear interaction will affect the measured changes 
In somatic input resistance in a similar way. It is laborious but 
quite straightforward to show that the change in somatic input 
resistance AK:; J = K +I* /j ~ K::’ in response to 2 synaptic inputs 
,:’ and g (at 2 distinct locations, i and j, and with 2 distinct 
synaptic reversal potentials, E, and E,) is given by 

(21) 

Similar to Eq. (I 2), the change in input resistance is independent 
of the reversal potential of either synapse. Furthermore, .G.K::’ 
obeys the following inequality, 

1K $S + AK) /\ i: AK’, \\ (22) 

or. because all these quantities are negative (for g, e 0 and g, 
? 0) 

IAK\,I + IAK:,I r IAK::J~ (23) 

Thus. the change in somatic input resistance due to the simul- 
taneous activation of both synapses i and j is always less than 
or equal to the change in somatic input resistance due to the 
synaptic input at i, A&$,, plus the change in input resistance due 
to activation of the second synapse, AK:,. Equality only holds 
if the 2 synapses are completely decoupled, i.e., K,, = 0. In other 
words. the change in somatic input resistance when activating 
numerous synaptic inputs is always less than the sum of the 
changes in input resistance when the synaptic inputs occur by 
themselves. The amount of sublinear behavior depends on the 
product of the input resistance at the synapse, K,,, and the con- 
ductance input g. Numerically (see below). we observe a similar 
sublinear behavior for the synaptic visibilities (r), that is, the 
1 isibilities of 2 simultaneous active synapses are less than the 
visibility of the sum of the 2 by themselves, although we have 
no rigorous proof for this result. 

Our analytical results only apply to stationary synaptic input. 
We did not attempt to prove any analogous results for time- 
dependent conductance changes. Transient changes in the mem- 
brane conductance of a passive cell will be less visible from the 
soma than their stationary counterparts, because the charging 
of the membrane capacitance delays the rise of the membrane 
potential to its final level. This result was first stated and dis- 
cussed by Rail (I 967) and is confirmed by our computer sim- 
ulations (see below). 

The input conductance of a neuron is measured by recording 
the change in voltage induced by a rectangular current injection. 
The duration of the current injection is usually much longer 
than the membrane time constant, so that the measurement of 
voltage deflection can bc made after the membrane has settled 
to its new level. An alternative method, using short current 
pulses. was suggested by Barrett and Barrett (1976) and used by 

Carlen and Durand (1981) in their analog cable model. I f  a 
rectangular current pulse of amplitude I,, is applied from I = 0 
until t = T, then the input conductance can be approximated 
by the following expression: 

(;,,a = I,,T 

.I- 
/ (24) 

I.(f) dt 
0 

For a passive system such as ours, G,,, is always larger than the 
true input conductance G,,; in other words, this method con- 
sistently overestimates the input conductance. thereby under- 
estimating the input resistance R,,,. I f  Tis long enough to allow 
the membrane potential to converge to its final value in response 
to the current step, G,,, converges to its true value (;,, (set Fig. 
7). To measure the change in input resistance, the voltage rc- 
sponse I’(t) must be integrated as indicated in Eq. (24) during 
the synaptic input and subtracted from the measured (i,,, in the 
absence of any input. Thus, besides overestimating the true 
input conductance, this method suffers from the same principal 
limitations as does the method we discuss. Because this short- 
pulse method is thus less accurate than our more exact method. 
we refrain from using it. 

Numerical Simulations 

In the previous section, we derived an exact upper bound on 
the visibility of synaptic conductance changes as seen by an 
intracellular electrode at the soma of a passive, but otherwise 
arbitrary complex dendritic tree. However, to provide a satis- 
factory answer to our initial question-‘“Can inhibition act sc- 
lectively to block excitatory input in cat cortical cells without 
being visible from the soma?“-we will now flesh out this an- 
alytical framework with the help of 2 sets of simulations. In the 
first, we solve numerically the time-dependent cable equation 
for an idealized passive neuron whose properties bear some 
relationship to those of a retinal neuron. In the second. WC 
compute the changes in somatic input conductance resulting 
from stationary synaptic input for 2 anatomically characterLed 
cortical pyramidal cells with known distributions of inhibitory 
input. 

Methods and parameters 

Idealized neuron 
We assume a neuron that consists of a 1 5-Fm-diameter spherical 
soma and two 1.5~pm-diameter cylindrical main dendrites. These 
dendrites give rise to multiple secondary stub branches (Fig. I). 
The soma is represented by a lumped resistance and capacitance 
and the dendrites by a number of passive KC membrane com- 
partments (Fig. 1R). The membrane paramctcrs arc assigned 
standard values: C,,, = 1 PF cm :; R,,, = 10.000 12 cm’; K, = IO0 
Q cm, leading to a membrane time constant of T,,, = 10 mscc 
and a dendritic space constant of about X = 600 pm. 

Each dendritic compartment is 25 pm long. equivalent to 4% 
of X. The total length of each dendrite was 1.2 mm. The main 
dendrites give rise to secondary stubs at intervals of 25 pm. 
These stubs represent high-impedance synaptic input sites such 
as small secondary dendrites, or spines. Each stub is 10 pm long 
and 0.5 lrn in diameter and is represented by a single com- 
partment. The model neuron altogether consists of about 400 
RC compartments. We assume sealed-end boundary conditions. 
The appropriate cable equation is solved by the Crank-Nicolson 
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Figure 3. A, Computer plot of a reconstructed layer 5 pyramidal cell. TheJilled circles indicate the locations of 16 basket cell synapses obtained 
from the reconstruction shown in B. Four of the 16 synapses are located on the soma. Numbered arrowheads indicate the locations of spines that 
received excitatory inputs. The inhibitory synapses adjacent to spines 19 and 20 are usually applied to the trunk dendrite, but share the spines 
with the excitatory synapses in some computations. The apical dendrite is quite thick, tapering from 8 pm just beyond the soma to 4.4 pm at 
synapse 18 to 1.7 rrn at synapse 16. Scale bar, 100 Fm. Inset compares the size of this pyramidal cell with the superficial pyramidal cell shown in 
Figure 4A. B, Afferent of layer 5/6 basket cell making synaptic contact with a layer 5 pyramidal cell. Redrawn from figure 3 of Kisvarday et al. 
(1986), with permission. The arrows point to the synaptic contacts that were transposed to the cell shown in A. Scale bar, 100 pm. 

(1947) technique, which is second-order in both space and time, 
and is absolutely stable (for more details, see Mascagni, 1989). 
The somatic input resistance of the model neuron is 149 MQ, 
corresponding to G,, = 6.71 nS. 

An or function is used to model synaptic input (Jack et al., 
1975) because this function appears to describe synaptic in- 
duced changes in membrane conductance quite well for verte- 
brate sympathetic ganglion cells (Yamada et al., 1989): 

g(f) = const t~‘~mak (25) 

g,,,,, being the maximum increase in membrane conductance at 
time t,,,; that is gwak = g(&). The function g(t) decays to 1% 
of gpraL at about t = 7.64t,,,,. 

G:, is computed in the following fashion for transient inputs. 
A current pulse of long duration is injected at the soma. When 
the membrane voltage settles to its stationary value, the synaptic 
input is activated. The voltage response to synaptic activation 
alone is then subtracted from the response to combined current 
injection and synaptic activation. The maximal ratio of injected 
current to voltage difference between the 2 responses is then 
defined to be the somatic input conductance Gf,. This procedure 
corresponds closely to our definition of input conductance for 
stationary synaptic input [Eqs. (8-l l)]. 

Cortical pyramidal cells 

The 3-dimensional structures of 2 pyramidal neurons and the 
detailed synaptic terminations of 2 basket cells are used to in- 
vestigate the visibility problem for the specific case of cat striate 
cortex. These were selected because pyramidal cells are the ma- 
jor excitatory cell type in the cortex and the basket cells appear 
to be the most common putative inhibitory cell providing input 
to cortical pyramidal cells (Martin, 1988). We investigate 2 
cases: the effect of a layer 5/6 basket cell inhibiting a layer 5 
pyramidal cell, and the effect of a layer 314 basket cell on a layer 
2/3 pyramidal cell. 

The basket cells and pyramidal neurons (Figs. 3, 4) were 
filled with HRP during the course of in vivo experiments (Somo- 
gyi et al., 1983; Kisvarday et al., 1985; Douglas et al., 1989). 
The 3-dimensional coordinates and diameter of the dendritic 
tree were sampled by a computer-assisted method. Appropriate 
precautions were taken to measure, minimize, and compensate 
for tissue shrinkage and digitization errors. Each branch of the 
digitized dendritic tree was replaced by a single equivalent cyl- 
inder. The dimensions of the cylinder were obtained by com- 
bining all of the measurements along a branch to obtain the 



1734 Koch et al. - Visibility of Synaptically Induced Conductance Changes 

Figure 4. A, Computer plot of a reconstructed layer 2/3 pyramidal cell. Thefilled circles indicate the locations of 8 basket cell synapses obtained 
from the reconstruction shown in B. Four of the 8 synapses were located directly on the soma. Numbered arrowheads indicate the locations of 
spines that received excitatory inputs. This cell is more compact than the layer 5 pyramidal cell in Figure 3A. The diameter of the apical dendrite 
is 3.4 rrn leaving the soma but is reduced to 2.2 wrn at synapse 7 and 1.4 pm at synapse 6. Scale bar, 100 pm. B, Afferent of layer 3/4 basket cell 
making synaptic contact with a layer 213 pyramidal cell. Redrawn from figure 4b of Somogyi et al. (1983) with permission. The arrows point to 
the synaptic contacts that were transposed to the cell shown in A. Scale bar, 50 Frn. 

total length and average diameter of the cylinder. In this way, 
the original neuron was reduced to a set of connected cylinders. 
The most distal cylinders were terminated by sealed ends. The 
soma was assumed to be a prolate ellipsoid and was represented 
electrically as a lumped RC circuit. The major and minor axes 
of the ellipsoid were measured from the largest coronal cross 
section through the soma. 

The transfer resistances K,, between arbitrary points on the 
reduced neuron are computed by a method similar to that de- 
scribed by Koch and Poggio (1985). We only examine the be- 
havior of the cell for stationary or very slowly varying synaptic 
input. Representative locations of the putative inhibitory syn- 
apses of basket cells on superficial and deep pyramidal cells are 
obtained from the literature. It is clear that a single pyramidal 
cell receives convergent input from perhaps tens of basket cells 
(Martin et al., 1983). Kisvarday et al. (1986) have reported the 
detailed reconstruction of the terminations of an HRP-filled 
layer 516 basket cell onto a layer 5 pyramidal neuron. Some of 
these synaptic contacts were confirmed by electron microscopy. 
We measured the locations of the basket cell synapses made on 
their pyramidal neuron P3, as presented in figure 3 of Kisvarday 
et al. (1986). The relevant terminations, redrawn from their 
figure, are presented here in Figure 3B. We measure the dis- 
placements from the soma of the synapses indicated by arrows 
in Figure 3B and assume similar distances for the locations of 

inhibition on our measured layer 5 pyramidal cell. Four inhib- 
itory synapses are applied to the soma. All excitatory inputs 
were applied via spines. The locations of these are chosen for 
their interest value. For example, inputs 14 and 15 are close in 
and far out on a typical basal dendrite; 17 is at the distal end 
of the apical dendrite; inputs 19 and 20 can be programmed to 
share their spines with inhibitory synapses, and so on. 

The terminations of a layer 3/4 basket cell onto a layer 2/3 
pyramidal cell are obtained from similar data reported by Somo- 
gyi et al. (1983). The relevant portion of their figure 10a is 
presented here as Figure 4B. Again, 4 inhibitory synapses are 
located at the cell body. The superficial pyramidal cell we use 
in this simulation differs from pyramidal cells in other layers 
in that it has 2 apical dendrites, i.e., both have total dendritic 
lengths and diameters that are considerably larger than that of 
the basal dendrites. It is not unusual for the apical dendrites of 
layer 2/3 pyramidal cells to bifurcate close to the soma. 

We usually assume that synaptic activation evokes a con- 
ductance change at all of the inhibitory synapses formed by the 
basket cell axon, while we consider both single excitatory syn- 
apses as well as excitatory groups firing simultaneously. Simu- 
lations consist of computing Ku for various combinations of i 
and j for values of R,,, either equal to 10,000 or 40,000 0 cm’. 
R, is always 100 D cm. The K,, matrix, a list of synaptic con- 
ductances and reversal potentials, and an optional exogenous 
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current injection at the soma, are then submitted to a second 
program that solves the generalization of Eq. (8) for n simul- 
taneous, stationary synaptic inputs. Typical values for the input 
resistance throughout the 2 pyramidal cells as well as the elec- 
trotonic distance from these locations to the cell body are given 
in Table 1. The input resistances we obtain for R, = 10,000 0 
cm* reflect the range of values measured in cortical slice prep- 
arations, while the higher values computed for 40,000 D cm2 
are consistent with those found in vivo by Douglas et al. (1988). 

There is considerable evidence that cortical inhibition de- 
pends on both GABA, and GABA, receptors (Dutar and Nicoll, 
1988; for review, see Douglas and Martin, 1989). The GABA, 
effect is thought to be mediated via chloride conductance 
channels located on the cell body and proximal dendrites. The 
GABA, effect is mediated by potassium conductance channels 
on the dendrites (Douglas and Martin, 1989). We therefore test 
2 models of inhibition. The Chloride model assumes that all 
inhibitory synapses activate chloride conductances (of ampli- 
tude g,,), with a reversal potential identical to the resting po- 
tential, i.e., E, = 0 mV, i.e., silent inhibition. The Mixed model 
assumes that only the somatic synapses are mediated by chloride 
conductances, while all dendritic synapses are mediated by po- 
tassium conductances (of amplitude gK). The potassium reversal 
potential is set at E, = - 20 mV (with respect to resting potential). 
We usually test 3 values of chloride conductance gc,, 0.1, 1 .O, 
and 10.0 nS, while the potassium conductance g, is usually held 
constant at 0.1 nS, but is sometimes as much as 10 nS. 

Excitatory inputs are applied only onto spines, modeled by 
interposing a resistance, representing the thin spine neck, be- 
tween the synaptic conductance change and the dendrite. We 
use a neck resistance of 100 MR for R, = 10,000 D cm2 and 
400 MQ for R,, = 40,000 D cm*. Little is known about the 
amplitudes of excitatory synaptic conductance changes. An 
analysis of voltage-clamp data from cultured hippocampus py- 
ramidal cell yields a kainate-quisqualate-mediated conductance 
increase of 0.5 nS and much less for the NMDA receptor-me- 
diated conductance increase (for a review, see Brown et al., 
1988). Most of our computations use excitatory conductances 
of 0.1 nS, but values up to 10 nS are also tested. The excitatory 
synaptic reversal potential E is 60 mV. 

In order to judge the effectiveness of inhibition in reducing 
EPSPs, we introduce the dimensionless A4 factor as 

that is, the ratio of the amplitude of the inhibited EPSP at the 
soma (V,,,) minus the amplitude of the IPSP alone (V,) to the 
amplitude of the uninhibited somatic EPSP (V,). The M factor 
is the effective multiplication factor achieved by the inhibition 
and is independent of any membrane polarization induced by 
the inhibition. A low M factor implies that the interaction be- 
tween the inhibition and excitation is highly nonlinear, while 
A4 = 1 implies perfect linearity (because V,,, = V, + V,). In the 
case of silent inhibition, V, = 0 and M = l/F, where F is the 
F-factor introduced by Koch et al. (1982). For strong hyper- 
polarizing inhibition (E, < 0), A4 can exceed 1. 

Results 
Idealized neuron 
Figure 5 shows the somatic input conductance Gj: measured 
with an electrode in the cell body of the idealized neuron for 

Table 1. Input resistance (Kii) and electrotonic distance X for several 
sites” 

I--ii 

L 
soma 

19 
18 
16 

soma 
7 
6 
10 

10,000 40,000 
23.27 81.03 
26.99 83.96 
30.14 86.92 
84.90 153.08 
56.80 210.03 
62.49 215.70 
98.63 254.02 
468.63 661.34 

x = e/x 
10,000 40,000 
0.00 0.00 
0.14 0.07 
0.25 0.12 
0.73 0.37 
0.00 0.00 
0.06 0.03 
0.21 0.11 
0.69 0.35 

u On the cell body and on the dendrite just below the synapses indicated by number 
(see Figs. 3A and 4A) in the layer 5 pyramidal cell (top part of table) and the layer 
213 pyramidal cell (lower part) for 2 values of membrane resistance, R,,,. Note the 
electrotonic compactness of both cells. To obtain the input resistance at the spine 
head, add 100 MQ for the R,,, = 10,000 and 400 MQ for the 40,000 R cm’ case. 

various locations of a single excitatory synapse with an asso- 
ciated constant increase in the membrane conductance g,. Notice 
that G,*; for synapses located directly at the soma, i.e., for 1 = 
0, reflects the sum of the unperturbed input conductance G,, = 
6.7 1 nS and g,. The experimentally resolvable conductance in- 
crease for experiments of the kind described by Douglas et al. 
(1988) is about 20% of the somatic input conductance, i.e., a 
conductance increase AG,, can be detected if AG,IGz > 0.2. 
Thus, in practice, a single 10 nS input on the main dendrite is 
not detectable beyond approximately 0.6X (Fig. 54). The dis- 
tance beyond which a synaptic input will remain hidden (using 
present technology) decreases if the intracellular electrode causes 
significant injury to the cell, thereby adding a leakage conduc- 
tance. In this case, we require AG,,/(Gl: + GleaL) > 0.2 for an 
input to be seen [see Eq. (20)]. 

Figure 6 illustrates how transient synaptic conductance changes 
affect G; (compare this curve with Fig. 6 in Rall, 1967). The 
large size of the conductance inputs can be judged by the size 
of the evoked EPSP (Fig. 6A). As predicted, the change in input 
conductance induced by the transient inputs is less than that 
induced by stationary ones (compare Fig. 6B with 5.4). How- 
ever, the difference between the 2 is remarkably small, consid- 
ering that the rise time of the conductance inputs is only 20% 
of the membrane time constant (2 vs 10 msec). 

The behavior of the short-pulse method for measuring so- 
matic input conductance, G,,, via Eq. (24) is illustrated in Figure 
7. The voltage response in the soma, evoked by injecting a 0.1 
nA current pulse of variable duration T, is plotted in Figure 7A. 
As discussed above, integration over a short-duration pulse re- 
sults in an underestimate of the input resistance (Fig. 7B), and 
therefore in an overestimate ofthe input conductance. However, 
if the response is integrated over a sufficiently long interval, the 
true input conductance is eventually recovered. For sufficient 
convergence, the duration of the current step must be several 
times that of the membrane time constant (here, 10 msec), so 
that the membrane potential can settle to its new value. 

So far, we have considered the change in somatic input con- 
ductance in response to a single synaptic input. We prove in 
the analytical section of this paper that the interaction of several 
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f;lgure 5. A, Somatic input conduc- 
tance, G:,, after application of a single 
excitatory steady-state synaptic input 
on the main dendrite of our idealized 
neuron as a function of the electrotonic 
distance x/X between the synapse and 
the soma. The 3 curves correspond to 
g, = I, 5, and 10 nS, respectively. In 
this and the following figures, the solid 
urrou~ points towards the value of the 
somatic input conductance without in- 
put, G,, = 6.71 nS, while the stippled 
lint indicates the lower limit on the ex- 
perimentally measurable input conduc- 
tance change (20% of G,,). B, G:, for a 
stationary synaptic input on the main 
dendrite (upper curve) and on the sec- 
ondary dendritic branches (lower curve); 
g, = 10 nS and b = 91 mV. 

0 0.5 1.0 

I I 

synaptic inputs will reduce the resultant change in input con- 
ductance to less than the sum of the conductance changes to the 
individual synaptic inputs. Because of asynchronous activation 
of the synaptic inputs, Gz will be further reduced. We examine 
these effects in the response of our idealized cell to multiple 
asynchronous and transient excitatory and inhibitory synapses. 
The results are illustrated in Figure 8. Activation of 13 excitatory 
synapses with gwak = 2 nS and t,,, = 2 msec (top trace in Fig. 
8.4 and bottom trace in 8B) depolarizes the cell to about 44 mV 
relative to the cell’s resting potential but increases the somatic 
input conductance GE by only about 3 nS. Activation of an 
additional 13 inhibitory synapses with g,,, = 5 nS and t,,, = 
5 msec reduces the potential from 44 mV (relative to the resting 
potential) to about 16 mV and increases GE to about 18 nS. 
Thus, although in the latter case 26 synapses with peak con- 
ductance changes between 2 and 5 nS are all activated within 
the first 25 msec following the onset of the stimulus, due to 
temporal dispersion and to the nonlinearity alluded above, the 
somatic input conductance only increases by about 11.2 nS! 
Note that, as expected, Gz does not depend on the reversal 
potential of the synapse. 

Cortical pyramidal cells 

In these simulations we use the detailed morphology of cortical 
neurons-and in particular the location of identified synapses- 
to evaluate the magnitude of the conductance change in the 
soma of a pyramidal cell due to input from a single basket cell. 

Figure 6. A, The somatic EPSP in re- 
sponse to a single, transient excitatory 
synapse at various locations along the 
main dendrite. t,,, = 2 msec, g,,, = 10 
nS, and E = 9 1 mV. The total duration 
of&f) is approximately 16 msec. B, The 
observed somatic input conductance for 
3 different values of gWar: 1, 5, and 10 
nS as a function of electrotonic distance 
between the synapse and the soma. This 
plot should be compared with G:, in 
Figure 5A for stationary input. 

Tables 2-4 summarize the results. Table 2 lists the percentage 
conductance change, visibility, and the A4 factor for one rep- 
resentative excitatory input in each case. This input is given to 
synapse 18 on the layer 5 pyramidal cell and to synapse 6 on 
the layer 2/3 pyramidal cell. Table 3 gives more comprehensive 
results for the layer 5 pyramidal cell for just a few of the cases 
summarized in Table 2, while Table 4 provides this information 
for the superficial pyramidal cell. 

Table 2 shows that the visibility from the soma of the con- 
ductance change evoked by the single basket afferent is generally 
high. The visibility is smallest (65%) for the layer 5 pyramidal 
neuron, in the case that individual chloride-mediated synaptic 
conductances (silent inhibition) are large. Conductance changes 
in the Mixed model are almost entirely visible, even when the 
chloride synaptic conductance is large. In fact, for this model, 
the visibility improves with increasing g,, (see LSPyr). This 
improvement is due to the relative contributions to the total 
input conductance change provided by the constant 0.1 nS po- 
tassium conductance increase g, on the dendrites and the in- 
creasingg,, at the soma. Because the chloride-mediated synapses 
are located on the soma, they contribute a progressively in- 
creasing and completely visible fraction of the conductance 
change. On the other hand, the partially hidden (but constant) 
potassium-mediated synapses out in the dendritic tree provide 
a progressively smaller fraction of the total conductance change 
recorded at the soma. 

The A4 factor decreases with increasing inhibitory synaptic 

-0 0 20 

t lmsecl 
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Figure 7. Short-pulse method used to 
estimate the input conductance (Barrett 
and Barrett, 1976). A current step of 
constant amplitude (0.1 nA) is injected 
for a variable duration T and the volt- 
age response (shown in A) is integrated 
following Eq. (24). B, Resultant values 
of input conductance G,, as a function 
of the duration T of the current step. 
For short pulses this method consis- 
tently overestimates the input conduc- 
tance. If  T > T,,,, G,, converges to the 
correct value G,,. 

conductance (Tables 2-4). This decrease is greater for the Chlo- 
ride model than for the Mixed model and is most marked for 
the cases with high R,. In all cases, a reduction in Mis associated 
with an increase in the somatic input conductance. For example, 
attenuation of excitation to less than about 70% of its control 
value is associated with an increase in Gz of at least 30%. Thus, 
for the models of cortical inhibition that we investigate, signif- 
icant inhibition is always associated with an increase in somatic 
input conductance that is sufficiently large to be detectable by 
the methods employed by Douglas et al. (1988). The A4 factor 
of the Mixed model decreased with increasing g,, because the 
inhibitory action depends largely on its chloride component to 
achieve attenuation of the EPSP. However, the g, component 
will contribute to the efficacy of inhibition by its hyperpolarizing 
effect, as described below. 

These results are not substantially affected by moving 2 of 
the inhibitory synapses onto spines that were shared by exci- 
tatory inputs (Figs. 3A, 4A, Table 3). This is because the inhib- 
itory synapses on spines do not act in isolation. They always 
act in concert with the dendritic and somatic terminations that 
arise from the same inhibitory afferent. Consequently, the effects 
in the soma are dominated by the nonspinous terminations. 

Nonanatomical synaptic arrangements 

The inhibitory synapses on the layer 5 pyramidal cell form 2 
anatomical groups: those clustered about the soma and proximal 
apical dendrite and those that are applied to the more distal 

V 

[mVl 

apical dendrite as it courses through layer 4 of the cortex. These 
groupings may have functional significance. Therefore, in a de- 
parture from the strict anatomical model specified above, we 
investigate the case in which some inhibitory afferents are as- 
sumed to activate only the dendritic synapses. We assume that 
these synapses are potassium-mediated (with E, = -20 mV). 
The excitatory input is a 10 nS conductance increase applied to 
spines 18 and 20 (Fig. 3A). This large input generates a somatic 
depolarization of 13.8 mV. We test this modified model over 
a range of values of g,, seeking a value that might cause a 
significant drop in excitatory voltage, without inducing too large 
a change in the neuronal input conductance. The optimal so- 
lution is g, = 0.4 nS. This reduces the excitatory depolarization 
to 7.93 mV, and is associated with a 24.7% increase in somatic 
input conductance, approaching the practical detection limits 
encountered by Douglas et al. (1988). The visibility of this con- 
ductance change is 69% and the A4 = 0.88. Increasing the syn- 
aptic reversal potential to E, = -40 mV reduces the EPSP to 
4.6 mV, a reduction of 9.2 mV. This is associated with a 24.7% 
increase in Gz, a visibility of 69% and an A4 factor of 0.94, 
indicating relatively linear inhibition (for g, = 0.4 nS). 

In another departure from the known anatomy of cortical 
inhibitory interneurons, we tested the visibility of inhibition 
located on/y onto spines. Thus, for the layer 5 cell we assume 
that inhibition either shares spines 14-20 (Fig. 3A) with exci- 
tation or is located on the dendrite, just at the base of these 
spines. Table 5 illustrates the somewhat surprising result that 

Figure 8. A, Somatic membrane po- 
tential for multiple synaptic inputs on 
the dendritic tree. Thirteen excitatory 
synapses are distributed on the second- 
ary dendrites at a distance of 0.3-0.5 X 
from the soma, with gWar = 10 nS, t,,, 
= 2 msec, and E = 91 mV. Thirteen 
silent inhibitory synapses are inter- 
spersed between excitation on the main 
dendrite with g,,, = 0 (top curve), 1 
(middle curve), and 5 nS (bottom curve), 
t peak = 5 msec and E = 0 mV. B, The 
resulting somatic input conductance 
G:, in the presence of excitation and no 
inhibition (bottom curve), 1 nS (mid- 
dle), and 5 nS inhibition (top curve). 
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Table 2. Inhibitory effects of basket cell activation on pyramidal neurons in visual cortex of the cat 

L5Pyr: Cl R,= 10,000 S2cm2 L2/3Pyr: Cl R,= 10,000 Rem* 

L5Pyr: Mixed R,= 10,000 Rem* SK= 0.1 nS L2/3Pyr: Mixed R,= 10,000 fkm* gK= 0.1 nS 

sc/ Km %AK,, G,, % AG,, r M 
0.0 23.27 0.0 42.97 0.0 - 1.00 

0.1 22.58 -3.0 44.29 3.1 0.83 0.97 

gcr Km %A&, G,, %AG,, r M 
0.0 56.86 0.0 17.59 0.0 - 1.00 

0.1 54.46 -4.2 18.36 4.4 0.98 0.96 

1.0 45.53 -19.9 21.96 24.9 1.00 0.80 

10.0 17.25 -69.7 57.97 229.6 1.00 0.31 

1.0 20.88 -10.2 47.89 11.4 0.95 0.90 

10.0 11.92 -48.8 83.89 95.2 1.00 0.51 

L5Pyr: Cl R,= 40,000 Rem* L2/3Pyr: Cl R,= 40,000 Rcm2 

gcr Km %AK,, G,, %AG,, l? M 
0.0 81.03 0.0 12.34 0.0 - 1.00 
0.1 72.33 -10.7 13.83 12.0 0.93 0.88 

1.0 137.72 1 -53.4 1 26.51 1 114.8 IO.89 IO.42 
10.0 1 8.23 1 -89.8 1 121.51 1 888.5 IO.68 IO.05 1 

L5Pyr: Mixed R,= 40,000 fkm* gK= 0.1 nS 

gcr L %AK,, G,, %AG,, F 1 M 
0.0 56.86 0.0 17.59 0.0 - I 1.00 

0.1 54.46 -4.2 18.36 4.4 0.96 0.96 

1.0 39.51 -39.5 25.31 43.9 0.97 0.67 
10.0 10.88 -80.9 91.91 422.5 0.93 0.13 

ga Kss %AK,, G,, %AG,, l- M 
0.0 210.03 0.0 4.76 0.0 - 1.00 
0.1 180.05 -14.2 5.55 16.7 0.99 0.86 
1.0 79.12 -62.3 12.64 165.5 0.99 0.36 
10.0 12.49 -94.0 80.06 1581.6 0.94 0.04 

L2/3Pyr: Mixed R,= 40,000 Rem* gK= 0.1 nS 

110.0 1 22.14 ) -89.4 145.17 1 848.6 1 1.00 IO.11 1 

LSPyr refers to the effect of the layer 5/6 basket cell on the layer 5 pyramidal neuron (Fig. 3). L2/3Pyr refers to the effect of the layer 3/4 basket cell on the layer 213 
p! ramid (Fig. 4). Shown are the somatic input resistance (K,,) in MQ, the change in input resistance relative to the input resistance O/OAK,, the somatic input conductance 
(G ) in nS. the change in input conductance relative to the input conductance %AG,,, the visibility r = AC,&, and the M factor in response to stationary inhibitory 
Input of three different amplitudes g,,. The A4 factor [see Eq. (26)] describes the effectiveness of inhibition in reducing the somatic EPSP caused by a single excitatory 
5) napse (with 8, = 0.1 nS and E = 60 mV; excitatory synapse 18 on the layer 5 cell and synapse 6 on the layer 2/3 cell). Inhibition is applied to all synapses. CI refers 
to the case when all inhibitory synapses are of the shunting or silent type (of amplitude g, I and reversal potential E = 0 mV) and Mixed to the case in which the inhibitory 
synapses at the soma and proximal dendrites are of the GABA, type (with g,, and E = 0 mV) and the distal dendritic inhibitory synapses of the GABA,, type (with g, 
and E = -20 mV). R,,, denotes the 2 different values of the specific membrane resistance. 

for a relatively small excitatory conductance change (g, = 0.1 
nS) applied to all synapses, inhibition is (1) not very effective 
in reducing the somatic EPSP, and (2) if large enough (i.e., > 1 
nS in the R,, = 40,000 D cm2 case) is quite visible from the cell 
body. The fact that inhibition is not more effective in reducing 
excitation is due to the very small size of the excitatory input 
(small relative to the input resistance at the spine). For larger 
values of g,,, inhibition becomes more effective. As we noted 
above, our definition of the A4 factor in Eq. (26) is identical to 
l/F for shunting inhibition, where F is the ratio of somatic EPSP 
without inhibition to the somatic potential in the presence of 
inhibition (Koch et al., 1982). If inhibition and excitation share 
the same location, we have F = 1 + g&/(1 + g&), with K,, 
the input resistance of the spine. As long as gJ,, -=c 1, we arrive 

atM= 1/F= l/( 1 + g,K,,). We wish to emphasize at this point 
that such a specific innervation of spines by inhibition as pos- 
tulated here has not been reported. 

Discussion 
Assumptions 
This study examines the common experimental problem of in- 
terpreting synaptic events that occur at distal dendritic sites but 
are observed via a microelectrode located in the cell body. The 
principal assumption underlying all our results is that the neu- 
ronal membrane responds linearly within the voltage domain 
of interest (approximately -t 10 mV around the resting poten- 
tial). If significant membrane nonlinearities are activated by the 
synaptic input, such as the high-threshold calcium conductance 
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Table 3. Interaction of excitatory and inhibitory effects in our layer 5 pyramidal neuron in visual cortex of the cat 

I 
Mixed 
40,000 

0.1 
0.1 
K M 

0.00 
-1.64 
-1.30 
-0.43 

0.46 

-1.22 0.92 
-0.97 0.72 

-0.32 0.23 

Mixed 
40,000 

1.0 
1.0 
K M 

0.00 
-9.28 
-8.02 

-3.40 

3.25 

-7.21 0.64 

-6.26 0.54 

-2.69 0.22 

Cl Mixed Cl Cl 
10,000 10,000 40,000 40,000 

0.1 0.1 0.1 10.0 
0.1 

J’s M v, M v, M v, M 
0.00 0.00 0.00 0.00 
0.00 -0.47 0.00 0.00 
0.00 -0.44 0.00 0.00 
0.00 -0.25 0.00 0.00 
0.14 0.14 0.46 8.19 
0.13 0.97 -0.33 0.98 0.41 0.89 7.42 0.91 
0.11 0.77 -0.31 0.90 0.22 0.47 4.11 0.50 

0.04 0.29 -0.18 0.51 0.05 0.10 0.95 0.12 

0.12 0.12 0.44 5.37 0.44 2.66 

0.1 0.12 0.97 -0.35 0.98 0.39 0.90 4.84 0.90 -1.24 0.92 -7.60 0.63 

1.0 0.09 0.77 -0.33 0.90 0.21 0.47 2.62 0.49 -0.99 0.72 -6.26 0.66 

10.0 0.04 0.30 -0.19 0.51 0.05 0.10 0.59 0.11 -0.32 0.23 -2.83 0.22 

16 0.0 0.08 0.08 0.38 6.08 0.38 2.56 

0.1 0.07 0.95 -0.40 0.96 0.33 0.88 5.41 0.89 -1.30 0.90 -7.88 0.55 

1.0 0.05 0.68 -0.37 0.88 0.15 0.41 2.61 0.43 -1.04 0.71 -6.82 0.47 

10.0 0.01 0.10 -0.21 0.51 0.01 0.03 0.23 0.04 -0.34 0.23 -2.91 0.19 
17 0.0 0.05 0.05 0.31 2.62 0.31 1.57 

0.1 0.05 0.96 -0.43 0.96 0.28 0.88 2.32 0.88 -1.36 0.90 -8.44 0.54 

1.0 0.03 0.69 -0.39 0.88 0.13 0.41 1.08 0.41 -1.08 0.71 -7.30 0.46 

10.0 0.01 0.10 -0.23 0.50 0.01 0.04 0.09 0.04 -0.35 0.23 -3.11 0.19 
18 0.0 0.12 0.12 0.44 7.77 0.44 3.07 

0.1 0.11 0.96 -0.36 0.97 0.38 0.88 6.97 0.90 -1.28 0.83 -7.51 0.58 

1.0 0.08 0.73 -0.33 0.90 0.18 0.42 3.52 0.45 -0.99 0.72 -6.51 0.49 

10.0 0.02 0.15 -0.19 0.51 0.02 0.05 0.42 0.05 -0.32 0.23 -2.79 0.20 

19 0.0 0.12 0.12 0.45 8.03 0.45 3.16 

0.1 0.12 0.97 -0.35 0.98 0.40 0.89 7.23 0.90 -1.23 0.94 -7.36 0.60 

1.0 0.09 0.73 -0.35 0.69 0.20 0.44 3.78 0.47 -0.98 0.73 -6.43 0.50 

10.0 0.02 0.19 -0.19 0.52 0.03 0.06 0.59 0.07 -0.32 0.24 -2.75 0.21 

20 0.0 0.12 0.12 0.44 7.96 0.41 3.14 

0.1 0.12 0.96 -0.35 0.98 0.39 0.89 7.16 0.90 -1.23 1.01 -7.42 0.59 

1.0 0.09 0.71 -0.33 0.89 0.19 0.43 3.71 0.47 -0.98 0.79 -6.43 0.51 

10.0 0.02 0.18 -0.19 0.51 0.03 0.06 0.53 0.07 -0.32 0.26 -2.76 0.20 

all 0.0 0.73 0.73 2.80 27.80 2.80 15.16 

0.1 0.71 0.96 0.24 0.97 2.49 0.89 26.00 0.94 0.93 0.92 0.79 0.66 

1.0 0.54 0.73 0.22 0.90 1.25 0.45 16.34 0.59 0.74 0.73 0.69 0.57 

10.0 0.15 0.21 0.13 0.51 0.19 0.07 3.23 0.12 0.25 0.24 0.31 0.25 

The neuron and its excitatory and inhibitory contacts are shown in Figure 3. Excitatory inputs 19 and 20 share their spines with inhibitory synapses. Key as for Table 
2. Additional symbols: g,., excitatory conductance increase (nS); V,, somatic membrane voltage (mV). 

L 
found in the dendritic tree (and to some extent at the soma) in 
cat cortex (Stafstrom et al., 1982) linear cable theory no longer 
holds. In general, voltage-dependent membrane conductances 
in the CNS increase their value when the membrane is depo- 
larized (for a review, see Llinas, 1988). Therefore, if synaptic 
input were to activate membrane nonlinearities, the resultant 
change in somatic input conductance would be larger than the 
change induced in the absence of the membrane nonlinearity. 
Because the principal motivation of our paper is to place a lower 
bound on the visibility of synaptic-induced inhibitory conduc- 
tance changes, our results would not be affected. For contami- 
nation of the synaptic-induced conductance changes by mem- 

brane nonlinearities to be relevant here, one would have to argue 
that hyperpolarization activates an ionic current that decreases 
the membrane conductance. The resultant change in somatic 
input conductance would then be smaller than the change caused 
by synaptic input alone, thereby camouflaging the synaptic in- 
put. However, we are not aware of the existence of such a current 
in mammalian cortex. 

We further constrain ourselves mainly to examining the be- 
havior of neurons for stationary or very slowly varying synaptic 
input. This is a reasonable approximation, because typical stim- 
uli used to evoke responses from neurons in visual cortex ac- 
tivate the neuron for considerably longer than its membrane 
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Table 4. Interaction of excitatory and inhibitory effects in the layer 2/3 pyramidal cell 

nil 0.0 

0.1 

1.0 

10.0 

6 0.0 

i 

0.1 

1.0 

10.0 

7 0.0 

0.1 

1.0 

10.0 

8 0.0 k 0.1 

1.0 

10.0 

9 0.0 

0.1 

1.0 

10.0 

10 0.0 

0.1 

1.0 

10.0 

all 0.0 

0.1 

1.0 

10.0 

For more details see Table 3 

Cl 
10,000 

0.1 

K M 

0.00 

0.00 

0.00 

0.00 

0.29 

0.28 0.97 

0.20 0.69 

0.04 0.14 

0.33 

0.31 0.94 

0.22 0.67 

0.06 0.18 

0.33 

0.32 0.97 

0.23 0.70 

0.06 0.18 

0.32 

0.31 0.97 

0.23 0.72 

0.06 0.19 

0.24 

0.23 0.96 

0.16 0.67 

0.03 0.13 

1.48 

1.42 0.96 

1.02 0.69 

0.25 0.17 

I 
Mixed 
10,000 

0.1 

0.1 

v, M 

0.00 

-0.42 

-0.35 

-0.13 

0.29 

-0.14 0.97 

-0.12 0.79 

-0.04 0.31 

0.33 

-0.11 0.94 

-0.09 0.79 

-0.04 0.27 

0.33 

-0.10 0.97 

-0.09 0.79 

-0.03 0.30 

0.32 

-0.11 0.97 

-0.09 0.81 

-0.04 0.28 

0.24 

-0.19 0.96 

-0.16 0.79 

-0.06 0.29 

1.48 

1.01 0.97 

0.85 0.81 

0.32 0.30 

I 
Cl Cl 

40,000 40,000 

0.1 1.0 
- - 

v, M v, M 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

1.14 

0.98 0.86 

0.42 0.37 

0.05 0.04 

1.18 

1.01 0.86 

0.44 0.38 

0.07 0.06 

1.18 

1.02 0.86 

0.45 0.38 

0.07 0.06 

1.17 

1.01 0.86 

0.45 0.38 

0.07 0.06 

1.05 

0.90 0.86 

0.38 0.36 

0.04 0.04 

7.21 

6.28 0.87 

3.00 0.42 

0.54 0.07 

time constant. For example, a moving bar stimulus might have 
a velocity of about Y/set. This bar may activate an S2 simple 
cell whose total receptive field width is about 1”. In this case, 
subfield antagonism (for example) should be sustained for about 
200 msec. Because the time constant T, of pyramidal neurons 
is between 10 and 20 msec, we can consider the synaptic g(t) 
to be essentially constant on this time scale. Finally, we are 
mainly concerned with the presence or absence of cortical in- 
hibition, mediated by GABA. Evidence from work in rat hip- 
pocampus and pyriform cortex as well as rat and cat neocortex 
(Kehl and McLennan, 1985; Connors et al., 1988; Tseng and 
Haberly, 1988) suggests that the short-latency and fast IPSP 
seen upon stimulation of excitatory afferents to these areas is 
caused by activation of GABA, receptors, leading to a large 
increase in chloride conductance that reaches a peak at 18-25 
msec (at 30-3X). The long latency and slow IPSP that follows 
the fast IPSP is caused by a smaller increase in potassium con- 
ductance-due to GABA, receptor activation-that lasts for 
many hundreds of milliseconds. Because even a fast conduc- 

7.35 1.14 7.35 

6.39 0.87 -0.43 0.88 -4.13 0.62 

2.86 0.39 -0.26 0.56 -3.01 0.43 

0.33 0.04 -0.05 0.11 -0.81 0.11 

7.73 1.18 7.73 

6.74 0.87 -0.39 0.88 -3.7 0.64 

3.13 0.40 -0.24 0.53 -2.73 0.45 

0.47 0.06 -0.05 0.11 -0.74 0.11 

7.77 1.18 7.77 

6.79 0.87 -0.38 0.89 -3.67 0.64 

3.18 0.41 -0.24 0.53 -2.68 0.45 

0.53 0.07 -0.05 0.11 -0.72 0.16 

7.51 1.17 7.51 

6.55 0.87 -0.40 0.88 -3.85 0.64 

3.18 0.42 -0.24 0.54 -2.81 0.45 

0.51 0.07 -0.05 0.11 -0.76 0.11 

5.64 1.05 5.64 

4.88 0.87 -0.51 0.88 -5.26 0.60 

2.15 0.38 -0.30 0.54 -3.81 0.42 

0.24 0.04 -0.06 0.11 -1.01 0.11 

29.37 7.21 29.37 
27.05 0.92 5.00 0.89 14.11 0.77 

16.18 0.55 3.16 0.56 11.10 0.59 

3.56 0.12 0.68 0.12 3.54 0.18 

Mixed Mixed 

40,000 40,000 

0.1 1.0 

0.1 1.0 

v, M v, M 

0.00 0.00 

-1.43 -8.65 

-0.87 -6.19 

-0.18 -1.62 

tance increase with t,,, = 2 msec leads to an increase in somatic 
conductance little different from that caused by a stationary 
synaptic input (compare Figs. SA and 6B), our results apply to 
the standard GABA-mediated inhibition seen throughout the 
cortex. 

Theoretical and numerical results 

On the basis of these assumptions, we derive theoretical expres- 
sions for the increase in somatic input conductance due to the 
activation of a single synapse in a dendritic tree of arbitrary 
geometry and investigate the nonlinear interaction among many, 
simultaneously active, synapses. We introduce 2 factors, the 
visibility r in Eq. (15) and the attenuation M in Eq. (26). r is 
defined as the ratio of the change in somatic input conductance 
during synaptic input and the sum of the synaptic conductances 
and always obeys 0 5 r I 1 (for g, > 0). A large r implies that 
most of the synaptic conductance input is actually visible from 
the soma. However, r only represents a theoretical upper bound 
on the visibility, because additional considerations, such as noise, 
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quality of the electrical recording setup, etc., place additional 
limitations on what can be detected from the soma (Rail, 1967). 

Our theoretical results show that the observed conductance 
change at any location in the dendritic tree or cell body is always 
less than or equal to the actual synaptic conductance change 
(i.e., 0 I AG, 5 g,) and that this conductance change does not 
depend on the synaptic reversal potential. For an infinite den- 
drite of constant diameter, the change in the “somatic” input 
resistance, AK,, decreases exponentially, with a decay constant 
of one-half the length constant for small inductance inputs [Eq. 
(17)]. Thus, the visibility decays more rapidly in neurons that 
have relatively long and thin dendrites than those that have 
shorter and thicker dendrites. Because P does not depend on 
the synaptic reversal potential, hyperpolarizing, shunting or ex- 
citatory conductance changes are all equally visible. Further- 
more, changes in somatic input resistance (or input conduc- 
tance) induced by synaptic input do not add linearly. The change 
in somatic input resistance in response to 2 (or more) synaptic 
inputs is always less than the change in input resistance expected 
by adding the individual changes in somatic input resistance 
caused by each synapse acting alone [Eq. (23)]. This is simply 
a reflection of the nonlinear interaction among conductance 
inputs. 

We simulate the visibility problem in an idealized neuron 
consisting of 2 primary dendrites, each giving rise to multiple 
secondary branches. The performance of this model confirms 
our theoretical results and enables us to examine the effect of 
transient inputs. A transient synaptic conductance change is 
always less visible than a corresponding stationary change. How- 
ever, the numerical simulations show that if the synaptic input 
changes approximately as fast as the membrane time constant 
T,,, then the measured change in input conductance is little 
different from the true change in input conductance (Fig. 7). 
Figure 8 illustrates the conductance change at the soma in re- 
sponse to 26 transient excitatory and inhibitory synapses, each 
with a peak conductance change between 2 and 5 nS. Due to 
the nonlinear interaction among synapses as well as temporal 
dispersion, only about 11 nS are visible! 

In our investigations of “real” cortical neurons, we use the 
most comprehensive quantitative data available to us. A num- 
ber of workers have offered counts of presumed excitatory and 
inhibitory synapses in the visual cortex (Beaulieu and Colonnier, 
1985; Peters, 1987). These data are not derived from extensive 
series of serial sections or from labeled inhibitory afferents, and 
so they cannot provide a clear picture of the spatial relationship 
between inhibitory synapses activated by the same afferent. For 
example, these data do not establish whether inhibitory ter- 
minations on spines are also associated with inhibitory termi- 
nations on the trunk dendrite and whether these inhibitory ter- 
minals arise from the same afferent. It is also not clear what the 
distribution of spinous and dendritic contacts is along the length 
of the dendritic shaft. For these data we must turn to serial 
electron microscopic reconstructions (White and Rock, 1980) 
or to combined light and electron microscopy of labeled inhib- 
itory afferents (Martin et al., 1983; Somogyi et al., 1983; Kis- 
varday et al., 1985, 1987; Gabbott et al., 1988). 

We here focus on the inhibitory action of GABAergic basket 
cells on their spiny target cells. Inhibitory basket cells include 
the large basket cells of layer 2 and 3, the small basket or clutch 
cells commonly encountered in layer 4, and the “deep” large 
basket cells of layer 5 and 6 (Somogyi et al., 1983; Kisvarday 
et al., 1985). We selected these cells not only because the nec- 

essary quantitative data were available, but because the basket 
cell is a relatively common type of inhibitory neuron in visual 
cortex and is likely to play a significant role in the control of 
cortical pyramidal cells (Somogyi and Martin, 1985). The other 
inhibitory cell types such as the axoaxonic or chandelier cell 
(Somogyi, 1977; Peters et al., 1982) as well as the double bou- 
quet cell (Somogyi and Cowey, 198 l), are less common and 
their mechanisms are less obvious. The GABAergic axoaxonic 
cell makes contact with the axon hillocks of pyramidal neurons, 
predominantly in the superficial layers. However, their synapses 
are rare by comparison with the inhibitory synapses of other 
cell types that are located elsewhere on soma and dendrites 
(Beaulieu and Collonier, 1985). The majority of double bouquet 
cell synapses make contact with dendritic shafts of other inhib- 
itory cells (Somogyi and Cowey, 198 l), and these do not concern 
us for the present. The remainder make contact with the spines 
and shafts of spiny cells, but there are no suitable data available 
that could enable us to simulate their possible actions. Given 
the predominance of basket cells among inhibitory interneurons 
and their significant innervation of the soma and proximal den- 
drites of spiny cells, any model of inhibitory mechanisms must 
take account of the basket cell system (Martin, 1988). 

Our investigations of the basket-pyramidal interaction have 
shown that inhibition sufficient to yield significant attenuation 
of excitation (A4 < 0.7, for example) is accompanied by a large 
(> 30%) increase in somatic input conductance. This is consis- 
tent with the observations of Miles and Wong (1984), who found 
that single afferent IPSPs in hippocampal pyramidal cells were 
accompanied by a 7.5 nS increase in input conductance. Because 
their average somatic input conductance in the absence of syn- 
aptic input was 33 nS, the inhibitory increase is about 23%. In 
our simulations, more than 80-90% of the inhibitory conduc- 
tance change due to typical basket cell inputs is visible from the 
soma (i.e., P > 0.8), even for inhibitory conductances so large 
that the somatic input conductance increases by 200%. This is 
the order of change in input conductance reported by Connors 
et al. (1988) for electrically evoked inhibition of cortical pyra- 
mids in cortical slices (see also Berman et al., 1989). 

It has been argued that inhibitory inputs might occur exclu- 
sively on distal spines, and so their conductance changes could 
be hidden from the soma. However, there is no anatomical 
evidence for inhibitory afferents with such exclusivity. Somogyi 
et al. (1983) and Kisvarday et al. (1987) report that the basket 
cells (from which we drew our examples) made contact with 
both dendritic shafts and spines, and this configuration may 
well be typical of inhibitory control in the cortex. In our sim- 
ulations we examined the effect of placing some inhibitory syn- 
apses on spines that also received excitatory input, but this 
modification did not appreciably affect the nature of our results. 
This is because the remaining inhibitory dendritic and somatic 
synapses dominate the changes seen in the soma. We did sim- 
ulate the case where inhibition only contacted those spines also 
enervated by excitation, although such a specific anatomical 
arrangement has not been found. For our range of parameters, 
the resultant inhibitory conductance changes will be visible at 
the soma if they are to reduce the EPSP caused by excitation 
(Table 5). Detailed anatomical data of other inhibitory cell types 
are required to decide finally the important question of selective 
control of spines. 

Our results lead us to the conclusion that the increase in 
somatic input conductance due to the activity of basket cells 
should be clearly visible from recording sites at or near the cell 



1742 Koch et al. * Visibility of Synaptically Induced Conductance Changes 

Table 5. The effectiveness and visibility of inhibition located only on 
dendritic spines on the layer 5 cell (Fig. 34 

R, = 10,000 Rem’ 

v, 
0.73 

0.72 
0.62 
0.39 

0.73 
0.72 

0.61 
0.28 

I(,* G*, 
23.27 42.97 
23.03 43.41 
21.38 46.77 

16.61 60.19 
23.27 42.97 
23.03 43.42 
21.22 47.12 

13.73 72.84 

R, = 40,000 Rcm2 

M 
1.00 

4.5 0.79 0.94 
30.7 0.54 0.70 

45.82 21.83 76.9 0.14 0.47 

81.03 12.34 

t 

0.0 1.00 
77.42 12.92 4.7 0.82 0.94 
57.18 1’7.49 41.7 0.74 0.63 

21.48 1 46.55 1 0.49 277.2 0.16 

Inhibition either shares spines number 14-20 with excitation (upper part of each 
table) or is located on the dendrite iust below the wines (lower Dart of each 

%AG,, 
0.0 
1.0 
8.8 

40.1 

0.0 
1.0 
9.7 
69.5 

r 

0.63 
0.54 
0.25 

0.64 

0.59 
0.43 

. . 
table). Excitation of amplitude & = 0.1 nS and reversal potential E = 60 mV are 
applied to all spines simultaneously. We use 2 different values of the specific 
membrane resistance R,,,. For further details, see Table 2. 

body of cortical pyramidal cells. Technical and noise consid- 
erations place a limit of AG,/Gj: = 0.2 on the minimum change 
observable (Douglas et al., 1988). Our simulations show that in 
order to attenuate excitation significantly (i.e., M < 0.7), the 
basket cell induces a relative somatic conductance increase of 
at least 30%. This was true of both the Chloride and the Mixed 
models. Note that our Mixed model assumes that the basket 
cell input onto the pyramidal cell is associated with a GABA, 
postsynaptic receptor at the soma and a GABA, receptor in the 
dendritic tree. 

Only one model provided appreciable inhibition associated 
with a relatively small increase in conductance. This was the 
model in which inhibition only acted by increasing a potassium 
conductance at the distal dendritic inhibitory synapses, inde- 
pendent of the proximal and somatic synapses typical of basket 
cells. The somatic EPSP was lowered in one case by about 9 
mV with an M factor of 0.94, the most linear of all the cases 
that we tested. Thus, the reduction in the EPSP was largely due 
to hyperpolarization, not to shunting. Hyperpolarizations of this 
kind were observed by Douglas et al. (1988). However, this 
model does not conform to the known synaptic innervation 
pattern of inhibitory basket cells. 

Functional implications 

The high visibility of inhibitory conductance changes in cortical 
neurons is due to the proximity of these synapses to the soma. 

Given the thick apical dendrite (the diameter of the first 400 
pm of the apical dendrite of the deep pyramidal cell of Fig. 3 
is 4.4 pm), the electrotonic distance of even the most distant 
inhibitory basket cell synapse on oui layer 5 pyramidal cell (see 
Fig. 3A) is 0.47 for R,, = 10,000 Q cm2 and half of that value 
for the 4-times higher R, value (see Table 1). These conditions 
are not favorable for fractioning the dendritic field into local 
computational units. However, the anatomical structure of other 
cells, in particular those of retinal ganglion cells (Koch et al., 
1982), is different from that of pyramidal cells. Ganglion cells 
have long and narrow dendrites, leading to a decreased length 
constant and to high distal dendritic input resistances that favor 
the action of silent inhibition. Thus, it is possible that direction 
selectivity in retinal ganglion cells is achieved by different mech- 
anisms than in cortex (Amthor et al., 1984; Grzywacz and Am- 
thor, 1989). 

The failure to observe significant increases in somatic con- 
ductance during presentation of nonpreferred stimulation in- 
dicates that at least the basket cells do not exercise sustained 
inhibition during that response. This is consistent with the lind- 
ings of Ferster (1986), who reported that inhibitory potentials 
have the same orientation selectivity as excitatory potentials. 
Our results, together with the experiments of Douglas et al. 
(1988), imply that synaptically mediated inhibition cannot play 
the dominant role in suppressing excitation for nonpreferred 
stimuli that has been assigned to it. For instance, the Barlow 
and Levick (1965) veto-scheme for direction selectivity depends 
simply on the phase relationship between excitatory and inhib- 
itory conductance changes to determine preferred and null di- 
rection: both excitatory and inhibitory conductance changes have 
the same magnitude in both directions. While this model may 
be applicable to the retina, it appears that in cortex it is not. 
Massive inhibition is absent during nonpreferred stimulation, 
and massive excitation is present only during the preferred re- 
sponse. 

One interesting model which could in principle explain the 
experimental findings relies on the tonic presence of both ex- 
citatory and inhibitory conductance changes (see, also, Martin, 
1988). Stimulating the cell in its null direction or orientation is 
then postulated to decrease the conductance of the excitatory 
synapses from their steady-state level and to increase the con- 
ductance of the inhibitory synapses (and vice versa in the pre- 
ferred direction). The cell would then effectively be inhibited 
while showing no net change in somatic input conductance [be- 
cause the conductance increase associated with inhibition is 
canceled by the conductance decrease ofexcitation; see Eq. (2 l)]. 
Because such tonic input would most likely be mediated by 
feedback intracortical afferents, this “detailed balance” model 
is quite different from the type of feed-forward schemes pro- 
posed to underlie orientation or direction selectivity (for a re- 
view of these, see Ferster and Koch, 1987, and Martin, 1988). 
The type of models that need to be considered now must in- 
corporate the massive inhibitory and excitatory feedback con- 
nections evident among all cortical cells. 
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