
The Journal of Neuroscience, June 1990, fO(6): 1630-1637 

A Quantitative Description of NMDA Receptor-Channel Kinetic 
Behavior 

Craig E. Jahr’ and Charles F. Stevens2,a 

‘The Vellum Institute, Oregon Health Sciences University, Portland, Oregon 97201, and *The Section of Molecular 
Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510 

Currents evoked in neurons of the vertebrate CNS by the 
glutamate agonist N-methyl-D-aspartate (NMDA) exhibit a 
marked voltage dependence in the presence of extracellular 
Mg. At the single-channel level, the addition of external Mg 
alters single-channel openings from long-lived events to many 
very short events grouped into bursts of openings. These 
bursts apparently result from short interruptions of current 
flow during periods when the channel is in the open config- 
uration. 

Single-channel currents evoked by NMDA have been stud- 
ied in outside-out patches of membrane taken from hippo- 
campal CA1 neurons grown in dissociated cell culture. The 
effects of changing external Mg concentration and holding 
potential on the single-channel parameters of open time, 
closed time, and burst length have been successfully de- 
scribed assuming a 3- or 4-state model with 1 open state, 
1 or 2 “blocked” states, and 1 absorbing closed state. Eval- 
uation of the blocking rates over Mg concentrations from 
0.2-200 @I indicate that a single “blocking” mechanism can- 
not account for the short closed states and that a second 
voltage-dependent but Mg-independent “blocked” state is 
necessary to explain the data especially at low Mg concen- 
trations. 

The excitatory amino acid channels selectively activated by 
N-methyl-o-aspartate (NMDA) are remarkable because their 
gating is jointly controlled by a nemotransmitter, probably glu- 
tamate (Watkins and Evans, 198 1; Mayer and Westbrook, 1987), 
and by a voltage-dependent block of the channel produced by 
physiological concentrations of Mg ions (Mayer et al., 1984; 
Nowak et al., 1984). This dual control means that these channels 
can contribute to the synaptic conductance only if 2 conditions 
are met: neurotransmitter is released by the presynaptic neuron 
and, at the same time, the postsynaptic neuron is sufficiently 
depolarized to relieve the channel block (Collingridge et al., 
1988; Forsythe and Westbrook, 1988). The goal of the work 
described here is, through an analysis of single-channel currents, 
to provide a quantitative description of the effect of membrane 
voltage on the blockade of NMDA receptor channels by Mg. 
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The ability of Mg to antagonize the depolarizing action of 
NMDA had been appreciated for some time (Evans et al., 1977) 
before it was reported that the voltage dependence ofthe NMDA 
response (MacDonald and Wojtowicz, 1982) was conferred by 
a block of the ionic pore by Mg (Mayer et al., 1984; Nowak et 
al., 1984). At physiological Mg concentrations (near 1 mM), 
NMDA receptor channels do not conduct current if the post- 
synaptic membrane potential is more negative than about -80 
mV, but they conduct current freely if the membrane potential 
is, for example, +20 mV. This conclusion is based on 2 main 
observations. First, the voltage dependence, as revealed by neg- 
ative slope region ofthe current-voltage relation, is mostly elim- 
inated if Mg ions are removed from the extracellular solution 
(Mayer et al., 1984; Nowak et al., 1984). Second, a pattern of 
brief interruptions of single-channel currents, much like that 
identified as channel blocking in other systems (Neher and Stein- 
bath, 1978), is observed; the frequency of these interruptions 
is directly related to Mg concentration (Nowak et al., 1984; 
Ascher and Nowak, 1988). 

According to the simplest model of channel block, the recep- 
tor can exist in 3 states, closed (C), open (0), and blocked (B), 
that are connected according to the diagram 

C-O-B (1) 

where the transition from closed to open would require that 
neurotransmitter had been bound, and the open to blocked tran- 
sition would involve the voltage-dependent binding of an Mg 
ion. This sequential blocking model is at least roughly in accord 
with single-channel data. As pointed out in the original descrip- 
tion of Mg-dependent interruptions (Nowak et al., 1984) how- 
ever, the model given by scheme (1) predicts that the open burst 
(in which the channel alternates between open and blocked states) 
should lengthen in proportion to Mg concentration (Neher, 1983) 
but it does not (Nowak et al., 1984; Ascher and Nowak, 1988). 

Scheme (1) also fails to predict the voltage dependence of the 
macroscopic currents (Mayer and Westbrook, 1987). This the- 
ory predicts that the total length of time the channel remains 
in the open state during each burst is independent of Mg con- 
centration. Thus, the total charge transferred into the neuron 
each time the channel opens from the closed state is independent 
of blocking. At agonist concentrations where the probability of 
opening is low, the average current produced by a population 
of channels, therefore, is unaffected by the blocking, and the 
average current passed should not decrease with larger hyper- 
polarizations. Some modification of scheme (1) is thus needed 
to provide a satisfactory explanation for the voltage-dependent 
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gating that arises from a voltage-dependent block of the channel analysis. However, subconductance levels (Cull-Candy and Usowicz, 
L.. hdrr :,..... 1987: Jahr and Stevens. 1987: Ascher et al.. 1988: Cull-Candv et al.. 
“y l”ltj I”‘13. 

Our final conclusion will be that an Mg-blocking mechanism 
is indeed a plausible basis for interruptions, but our description 
will require a rather complicated model. We arrive at this model 
in 2 steps. The first step is to show that the simplest extension 
(2) of the blocking model described above 

1988) occurring during an opening were included in’the measured open 

Results 
General observations 
Our conclusions are based on studies of 24 outside-out patches 
excised from rat hippocampal neurons from the CA1 field. To 
avoid problems associated with averaging data from different 
experiments, we have limited much of our analysis to 2 patches 
for which we succeeded in collecting data at 4-7 membrane 
potentials and 3 Mg concentrations. Additional experiments 
have been carried out, as described below, to check the validity 
of certain specific points. 

a 
O* -B 

Ab/ 
C 

is relatively satisfactory for describing single-channel kinetics 
at any given Mg concentration. This model, however, is not 
quite in accord with the physical interpretation of gating as 
occurring through a voltage-dependent Mg block. The second 
step is to extend scheme (2) to include 2 distinct blocked states. 
Although this second model is more complicated in that the 
channel can occupy 4 (rather than 3) states, the complication is 
necessary to provide an account of channel behavior at all volt- 
ages and all Mg concentrations from 0.2-200 PM. 

Materials and Methods 
Hippocampal neurons from the CA1 region were dissociated from l- 
to 3-d-old Long-Evans rats. Blocks of tissue from the CA1 region of 
hippocampi were incubated in papain (20 units/ml; Worthington) for 
0.5-l 5 hr at 37°C with constant agitation. The tissue was twice washed 
in complete medium [MEM, Earle’s salts (Gibco); 20 mM glucose; pen- 
icillin, 50 units/ml; streptomycin, 50 mg/ml; 5% heat-inactivated fetal 
bovine serum (Hyclone), Serum Extender (Collaborative Research)] with 
added BSA (5 mg/ml; Sigma) and trypsin inhibitor (5 mg/ml; Sigma) 
and then dissociated into a single-cell suspension by trituration with a 
flamed Pasteur pipette. The cells were plated on glass coverslips coated 
with collagen/poly-n-lysine (Biomedical Technologies/Collaborative 
Research). Cultures were fed every 2-4 d by replacing half the medium. 
Arabosylcytosine (5 PM) was added for l-2 d during the first week to 
suppress proliferation of non-neuronal cells. 

Experiments were performed on outside/out patches of membrane 
(Hamill et al., 198 1). taken from neurons grown from l-3 weeks in 
culture. Solutions containing NMDA, glycine and different Mg concen- 
trations were applied by placing the patch inside constantly flowing 
perfusion tubes to insure complete changes in the concentrations of 
agonist and Ma. The standard extracellular solution to which NMDA, 
giycine, and Mg were added contained (in mM): NaCl, 165; CaCl,, 2; 
HEPES, 5 (pH adjusted to 7.3 with NaOH). The internal solution usually 
contained (mM): CsCl, 150; HEPES, 5; EGTA, 10; MgATP, 2 (pH 
adjusted to 7.3 with CsOH). In several experiments the internal solution 
was altered to determine if internal anions could block the NMDA 
channel at negative potentials. These solutions contained (in mM): (1) 
Cs gluconate, 140; CsCl, 10; HEPES, 5; EGTA, 10; (2) CsCl, 135; 
HEPES, 25; EGTA, 10; (3) CsCl, 175; HEPES, 5; EGTA, 1. In all cases, 
pH was adjusted to 7.3 with CsOH. The monovalent cation concentra- 
tions of the external solution were also altered in several experiments 
to contain (in mM): (1) NaCl, 486; CaCl,, 2; HEPES, 5 (pH 7.3); (2) 
NaCl, 165; CaC&, 2; HEPES, 5 (pH 6.45). NaCl, KCl, CsCl, and CaCl, 
were purchased from Alfa (Puratronic grade) or Aldrich (Gold Label). 
Three batches of complete recording medium without added Mg were 
assayed (Galbraith Laboratories, Knoxville, TN) and found to have 0.2 
f  0.02 WM Mg contamination. Solutions to which no Mg was added 
are therefore referred to as having 0.2 PM Mg. The agonists used were 
NMDA (Cambridge Research Biochemicals) plus glycine (BioRad; 2 
FM and 1 PM, respectively) unless otherwise specified. Membrane current 
was low-pass filtered at 2000 Hz (-3 dB; 8-pole Bessel) and digitally 
sampled at 100 psec intervals. Dwell times were measured at half am- 
plitude. Only events in the 50 pS size category were included in the 

At each voltage and each Mg concentration, we collected be- 
tween 32 and 1073 channel openings (mean, 286) for patches 
1 and 2 and up to 7021 openings under a single condition for 
other patches. For each condition, open and closed time his- 
tograms were compiled; typical examples are shown in Figure 
1, A, B. The histograms ofdwell times in the closed states clearly 
are composed of multiple components. In Figure lB, for ex- 
ample, the closed time histogram for -60 mV and 10 ELM Mg 
concentration is well fitted with a triple exponential with time 
constants (and relative amplitudes) of 0.5 msec (72%), 5 msec 
(lo%), and 188 msec (18%). The magnitude, and to a much 
lesser extent the time constant, of the fastest component varied 
with Mg concentration, but the other components are found to 
be Mg independent. 

Whenever a channel exhibits such a mixture of brief and long 
closed times, openings appear in bursts terminated by a long 
closed interval. An important question is whether these bursts 
represent a statistical structure beyond the mere presence of 
short and long intervals. It may be that the occurrence of a short 
closed interval makes it more likely, for example, that the next 
closed interval will be short. Alternatively, short and long in- 
tervals might be simply intermixed at random with a probability 
determined by the relative fraction of each duration class. For 
the data illustrated in Figure lB, for example, a short interval 
would be followed by another short interval 72% of the time if 
intervals are independent. An appropriate test to determine the 
dependence of one interval on the next is the serial correlogram. 
If N successive closed intervals are designated by t,, t,, . . . t,, . . . 
t,, the serial covariance function is defined to be 

c, = 2 (t, - TN,+, - T)O’ - k) 
,=I 

where T is the mean closed time. Notice that C, is simply the 
variance of the set of successive closed intervals, and C’, esti- 
mates the extent to which interval length is felt k intervals later. 
We use here the serial correlogram R,, which is the covariance 
function normalized by the variance: R, = C,/C,. R, = 1 and 
if intervals are independent, then R, should be close to zero for 
all k > 0. If  long intervals tend to follow other long intervals 
(and short follow short), R, will be greater than zero, whereas 
R, will be negative if intervals tend to alternate (long follows 
short, etc.). The stronger the influence an interval length has on 
the one k intervals later, the closer R, is to -t 1. 

Figure 1 C presents a serial correlogram for the closed times 
that gave rise to the histogram in Figure 1B and reveals that 
intervals are uncorrelated. Intervals were found to be uncor- 
related in 132 records from 24 patches. This result greatly sim- 
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Figure 1. Distributions of single- 
channel characteristics evoked by 
NMDA and glycine. A, Cumulative dis- 
tribution of open durations recorded at 
~ 60 mV in the presence 2 PM NMDA, 
1 PM glycine, and 10 PM Mg. The dis- 
tribution is fitted with a single expo- 
nential with a time constant of 2.5 msec. 
B, Cumulative distribution of closed 
durations in the same conditions as in 
A. The closed distribution is fitted with 
a triple exponential with time constants 
and amplitudes of 0.5 msec/72%, 5 
msec/9%, and 188 msec/l8%. C, Serial 
correlations of successive closed times 
from the same data set used in A and 
B showing that the closed durations are 
uncorrelated. D, Distribution of num- 
ber of interruptions per burst. The dis- 
tribution is fitted with a theoretical curve 
generated with Equation (11). 
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plifies the analysis because models that produce long-range cor- 
relations need not be considered. If the closed intervals had 
been correlated, more than a single open state would be required 
and the duration of a given closed interval would be influenced 
by the nature of the preceding open state. Since the closed states 
were uncorrelated, the assumption of a single open state is suf- 
ficient, although not required. 

Defining the statistical structure of channel behavior 

Short intervals must arise from a physically distinct mechanism, 
generally assumed to be Mg ion block of the pore, because the 
frequency of their occurrence is dependent on Mg concentration, 
whereas that of long intervals is not. Such short closed intervals 
will be termed interruptions, and the collection ofadjacent open- 
ings separated by interruptions are called bursts. We shall need 
to measure burst length, number of interruptions in each burst, 
interruption duration, the duration of closed times that are not 
interruptions, and dwell time in the open state (see Fig. 2 for 
an illustration of quantities measured). One cannot know def- 
initely whether a particular closing that is, say, 1 msec in du- 
ration is an interruption or simply an unusually brief closing of 
the noninterruption type; that is, we cannot in any individual 
instance decide whether a brief closed interval is due to an Mg 
blocking event or to a closing conformational change succeeded 
by a rapid reopening. Interruptions can, however, be defined 
statistically in a consistent way with little error when, as is the 
case here, their mean duration is much less than the mean 
duration of the noninterruptions, when interruptions and non- 
interruption closings are uncorrelated, and when the distribution 
of interruptions is approximately exponential. The definition of 
the various intervals is based on the following analysis. 

1. o-,- 

0.0’ : I 
0 5 10 15 20 25 30 

durot i on <ms> 

0 2 4 6 6 10 12 14 

number of interruptions 

Let p(t) be the probability density for a closed duration t, and 
assume that any given closed time can be due to 1 of 2 distinct 
mechanisms. Then, p(t) can be written as the sum of 2 com- 
ponents, 

p(t) = p,(t) + p,(t) (3) 

where p, is the probability density for an interruption and pC is 
the probability density for the longer, noninterruption closures; 
in all of our data, p, can be fitted with a single exponential with 
a time constant on the order of 0.5 msec, and p, with a multiple 
exponential, the shortest component of which is an order of 
magnitude greater than the interruption time constant. If we 
select a criterion time t,, defined by the equation 

s kr 
p,(t) dt = 0 sm p,(t) dt 

kr (4) 

and if we call any closed time less than t,, an interruption, then 
the number of interruptions that are missed because they are 
longer than t,, will be exactly compensated by the number of 
noninterruption closings that are shorter than t,, (and are there- 
fore counted, incorrectly, as interruptions). Thus, we will count 
interruptions correctly. The distribution of interruption dura- 
tions determined in an experiment, however, will be truncated 
because no interruptions longer than t,, are permitted. The mean 
interruption time will be in error (t,) by 

s 
m t, = m(t) dt kr 

The fractional error will be t,lT,, where T, is the mean inter- 
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ruption time. For patches 1 and 2, the mean critical interval t,, 
was 2.46 msec, the mean interruption time was 0.54 msec, and 
the mean estimated error t, was 0.02 msec, or less than 4% of 
T,. A burst is defined as a series of openings and interruptions 
terminated by a closure longer than t,, and has a length given 
by Equation (7) presented below. The mean error in burst length 
should be equal to the mean number of interruptions multiplied 
by the mean error in each interruption length; since channels 
spend more time open than interrupted except at very negative 
voltages or very high Mg concentrations, the mean error in burst 
time should be less than 2%. Open times are, of course, not 
influenced by errors in estimating interruption duration, and t,, 
is chosen to make the mean number of interruptions per burst 
accurate. Thus, the quantities that we shall use for our analysis 
(burst length, interruptions per burst, interruption duration, open 
duration) can all be measured with errors not exceeding 4%. 
Errors in estimation of various quantities are always comparable 
to or smaller than sampling errors. 

The 3-state model 
The simplest blocking model that can at least qualitatively ac- 
count for the NMDA receptor-channel gating behavior is illus- 
trated in scheme (2). This model has 4 rate constants a, b, A, 
and B that must be estimated, and we assume that each of these 
rate constants depends exponentially on membrane potential. 
That is, any rate constant R has the form 

R = exp(S,V + ZR) (6) 

where R represents a, b, A, or B; Vis membrane potential; and 
S, and I, are constants specific for the rate constant in question. 
The justification for this assumption will be given later. 

To compare scheme (2) with experimental observations, we 
must derive relations between rate constants and experimentally 
measured quantities. Any burst is characterized by 3 of the 4 
quantities: interruption times (t,), open times (t,), number of 
interruptions (n), and burst lengths (th). The means of these 
quantities are related by the equation 

Th = (N + l)T, + NT, (7) 

where T, and T, are the mean open and interruption times for 
the burst, T, is the mean burst length, and N is the mean number 
of interruptions. The primary quantities to be predicted, then, 
are N, TO, and T,. 

According to scheme (2) t, and t, are exponentially distributed 
with the form 

P,(t) = exp(-t/T,) (8) 

where P,(t) is the probability of a time PZ t, x is either i or o, 
and the characteristic times TX (which equal the means T, and 
TO) are given by 

T, = l/(b + B) (94 

and 

TO = ll(a + A) (9b) 

The probability of n interruptions per burst, p(n), is, because 
each interval is independent of the preceding ones, given by 

P(n) = cdl - 4) (10) 

This is the same equation that, for a coin flipping experiment, 
specifies the probability of getting n “heads” (interruptions) in 
a row followed by a “tails” (closure) when the probability of 

+=-t,t +tti 

+----tt,etb+ 

Figure 2. Single-channel parameters measured for analysis. Open du- 
ration (t,), interruption duration (t,), closed duration (f,), and burst du- 
ration (fh). Number of interruptions (n) occurring during the burst is 8. 

“heads” is q. The mean number of interruptions per burst (N), 
calculated from Equation (lo), is 

or 

N= q/(1 - q) (114 

q=N/(N+ 1) (1 lb) 

and q is given by 

q = abl[(a + A)(b + B)] (12) 

This last relation gives the probability that, when a transition 
from the open state occurs, the blocked state, rather than the 
closed state, will be entered [a/(a + A)] and that the channel 
will return to the open state from the blocked state [bl(b + B)]. 

In summary, then, the statistical structure of burst is com- 
pletely specified, according to this theory, by any 3 of the 4 
quantities T,, T,, TO, and N, and these quantities are in turn 
related to the 4 rate constants by Equations (7)-(9), (11) and 
(12) with the rate constants themselves being of the form spec- 
ified by Equation (6). 

Test of the 3-state model 

The first step in testing the 3-state model is to evaluate the 
adequacy of Equations (8) and (11) for the number of interrup- 
tions per burst, the open time, and the interruption time. Insofar 
as these equations are a satisfactory description of the observed 
distributions, then we need be concerned only with the mean 
values of n, t,, and t, that completely determine the fit of the 
theory to experimental data. 

Figure 1, A, B, D, show examples of distributions oft,, t,., and 
n with Equations (8) and (11) superimposed. Clearly, the fits of 
t, and n in these examples are adequate, and this is true in most 
instances. Although the distribution oft, cannot be unequivo- 
cally separated from t,, the time constant of the fastest com- 
ponent of the multiexponential fit will be used to estimate T,. 

When histograms oft, are constructed from large numbers of 
events, however, a double-exponential frequently provides a 
superior fit to the data, especially ifthe patch was held at positive 
voltages or in low Mg concentrations (see Jahr and Stevens, 
1987; Cull-Candy et al., 1988; Ascher et al., 1988). Theories 
like that represented in scheme (2) predict that dwell times 
should be single exponentials. If more than a single exponential 
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Figure 3. Voltage dependence of sin- 2 
gle-channel parameters, mean open g i 
time, mean interruption time, and mean 
number of interruptions per burst, re- 

-k” 

z 

corded in 100 FM Mg. The theoretical 
8 

.l 
curves were generated using Equations -50 0 50 
(6) (9) (1 I), and (12). holding potential ImVl 

is required to fit dwell time data, one of the assumptions of the 
model must be incorrect. Possibilities are that transitions do 
not occur according to a Poisson process, that the channels 
present do not have homogeneous properties, or that a channel 
has access to multiple open states that make transitions with 
somewhat different rate constants. Although we cannot evaluate 
the first 2 possibilities experimentally, we do have direct evi- 
dence for the existence of different open states that could, po- 
tentially at least, explain the existence of a multiple exponential 
open time distribution. Single-channel conductances fluctuate 
from opening to opening by amounts that exceed the uncertainty 
in estimating the mean current during an opening, and one 
occasionally observes transitions between conductance levels of 
an open channel (Cull-Candy and Usowicz, 1987; Jahr and Ste- 
vens, 1987; Ascher et al., 1988). Although events with conduc- 
tances lower than 45 pS were excluded from this analysis since 
they clearly can have shorter mean open times (Cull-Candy and 
Usowicz, 1987; Ascher et al., 1988), we do not know if those 
events greater than 45 pS which then close to a lower conduc- 
tance level before completely closing display different kinetics 
than those that never enter a lower conductance state. Whatever 
the cause for the multiple exponential open time distributions, 
the mean open time, To, describes the open time distribution 

.Ol ’ 
.l 1 

[Mg2+1 El 
100 

Figure 4. Blocking rate normalized by the Mg concentration vs Mg 
concentration at a holding potential of -60 mV. Note the marked 
concentration dependence indicating that a single “blocking” mecha- 
nism cannot account for all of the interruptions. The data are fitted with 
the 4-state equation: blocking rate/[MgZ+] = (a, + a,)/[Mg2+]. 

holding potential imV1 

sufficiently well for the present analysis. A more refined analysis 
of NMDA receptor channel kinetic behavior would have to 
address this problem, but the approximate treatment used can 
be claimed to capture the main effects if the theory is successful. 

In summary, then, the predictions of the 3-state model for 
the distributions of open times, interruption times, and number 
of interruptions per burst [Eqs. (8) (1 l)] are in at least approx- 
imate agreement with our observations. To the extent that this 
agreement is satisfactory, the 3-state model can be tested by 
comparing predicted and observed average values for open time, 
interruption time, and number of interruptions per burst as a 
function of voltage and for various Mg concentrations. Specif- 
ically, as the second step in testing the 3-state model, we need 
to evaluate Equations (9) and (11) with rate constants of the 
form given in (6). For patches 1 and 2, we collected single- 
channel currents at 6 Mg concentrations (0.2, 10, 32, 50, 100, 
and 200 PM), and at 4-7 voltages from -80 to +60 mV. We 
have used a straightforward least-squares method to give an 
estimate of the rate constants in scheme (2). 

For each Mg concentration, we estimated S, and I, in Equa- 
tion (6) for each of the 4 rate constants in scheme (2). This was 
done by substituting the expression for the rate constants [Eq. 
(6) into Eqs. (9ab) and (12)] and minimizing the sum of squared 
differences between the predictions of the equations and the 
observed values for To, T,, and Nat the various voltages used. 
At every Mg concentration the voltage dependence of the closing 
rate constants A and B were close to zero and of either sign. 
These values were thus constrained to zero and the rate con- 
stants redetermined. 

The kinetic model described in scheme (2) proved generally 
satisfactory in describing the observed averages for To, T,, and 
N. A comparison of the predicted and observed mean values is 
shown for one Mg concentration (0.1 mM) in Figure 3; other fits 
are about as satisfactory. Although scheme (2) can fit our data 
for any given Mg concentration, no single set of rate constants 
can describe the channel behavior for the entire range of voltages 
and Mg concentrations. In fact, the physical interpretation of 
interruptions as described by scheme (2) cannot be correct. Ac- 
cording to the Mg blocking interpretation of the rate constant 
a in scheme (2), mass action requires that the blocking rate 
should depend linearly on Mg concentration (or, more properly, 
on Mg activity). To evaluate this prediction, we have estimated 
the empirical Mg blocking rate r per mM of Mg present (for 
fixed voltage) using the equation 

r = N/[c(T, - NT,)] 

Here, r is the blocking rate/mM, c is the Mg concentration, and 
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Table 1 

Rate constants 

aI = exp(-0.016 V - 2.91) msecc’ 
a2 = Cexp(-0.045 V - 6.97) PM-’ msecc 
b, = exp(0.009 V + 1.22) msec-’ 
b, = exp(0.017 V + 0.96) msec’ 
A = exp(-2.847) msec’ 
B, = exp(-0.693) msec I 
B, = exp(-3.101) msec-I 

the other symbols are as previously defined. The denominator 
of this fraction gives the mean total open time in each burst so 
that the ratio estimates the number of interruptions per msec 
of time available for an interruption to occur and per mM of 
Mg present to block. The rate constant r is determined for each 
Mg concentration (at a fixed voltage = -60 mV) and is plotted 
as a function of Mg concentration. If r arose from a blocking 
mechanism and if scheme (2) were correct, r should be inde- 
pendent of Mg concentration. 

As can be seen from Figure 4, r estimated in this way is not 
independent of Mg concentration, but rather increases dramat- 
ically with decreasing Mg concentration. r would become in- 
dependent of Mg concentration if all of our solutions were con- 
taminated by 15-20 FM Mg. This is unlikely, however, since we 
used very pure salts and determined the Mg concentration in 
our nominally Mg-free solutions to be 0.2 PM. Thus, in spite of 
the fact that scheme (2) provides a satisfactory formal descrip- 
tion of channel behavior at any single Mg concentration used, 
either the physical interpretation of a as the rate of block by Mg 
ions is incorrect or scheme (2) is an insufficiently accurate de- 
scription of the channel’s function. 

The I-state model 

Although the 3-state model cannot actually be correct, its formal 
success suggests a simple modification that maintains the notion 
that interruptions do arise by a Mg block. Because interruptions 
still occur at very low Mg concentrations, an obvious possibility 
is that a second blocking mechanism is present in addition to 
the Mg block. The appropriate state diagram is 

where B, would be the alternative blocked state and B, the Mg 
block state. The rate constants are, as indicated in (13) a,, a>, 
b,, b2, A, B,, and B,. Note that, for the proposed physical in- 
terpretation of (13) a, is independent of Mg concentration and 
a2 depends linearly on Mg. A least-squares procedure estimated 
these rate constants using data from all voltages and Mg con- 
centrations and gave the values presented in Table 1. Figure 5 
shows the comparison of predicted and observed data for the 
range of Mg concentrations and voltages used in our experi- 
ments. The fit reveals that the 4-state model provides a satis- 
factory description of the data (see Appendix). 
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Figure 5. Open duration, interruption duration, and number of inter- 
ruptions/burst vs voltage and Mg concentration. The theoretical surfaces 
are generated from the 4-state model using Equations (6), (9), (1 l), and 
(12) after substitution ofthe 4-state rate constants given in the Appendix. 

If the interruptions seen at low Mg concentrations are not due 
to Mg, are they perhaps blocking events by some other ion? 
Note that the voltage dependence of the interruption rate in low 
Mg is less than half of that at higher Mg concentrations (compare 
a, and a2 in Table 1). This suggests that the interruptions in the 
absence of Mg have a different mechanism, perhaps the result 
of a monovalent ion block. We have changed sodium, pH, and 
calcium in the extracellular solution (the only cations present), 
and chloride, EGTA, and HEPES in the internal solution and 
have found no change in the rate of interruptions in nominally 
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zero (actually 0.2 FM) Mg. Specifically, decreasing pH from 7.4 
to 6.5 or increasing sodium ion concentration from 160 to 486 
mM produced no change in Tiz, T,, or N. In the high sodium 
concentration solution, the single-channel conductance in- 
creased from 50 to 70 pS. Increasing calcium concentration from 
1 to 10 mM similarly caused no increase in interruptions, al- 
though the single-channel conductance was decreased to about 
half the normal value. No change in interruption rate was ob- 
served when internal ionic constituents were individually al- 
tered (chloride from 150 to 10 mM, HEPES from 5 to 25 mM, 
and EGTA from 10 to 1 mM). Furthermore, the interruption 
rate seems not to vary with the concentration of NMDA (0.5- 
10 PM) used to open channels. If the interruptions seen at low 
Mg concentrations represent a channel blocking event by an ion, 
we have not been able to identify the blocking ion. 

Discussion 
Ascher and Nowak (1988) have examined the question of Mg 
block using methods similar to those employed here. Their re- 
sults are qualitatively similar to the ones we have presented, 
but they did not pursue a detailed kinetic analysis to fit all the 
observations. They conclude that a voltage-dependent Mg block 
is a likely mechanism for the interruptions and note that T,, 
does not increase directly with Mg concentration so that the 
simple sequential block model (scheme 1) cannot be correct. 
The voltage dependencies of our blocking and unblocking rates 
derived from the 3-state model (scheme 2) and theirs are quite 
close: they found that the blocking rate constant (k., in their 
terminology) was 6.1 x lo5 exp( - V/l 7) M I set I and the 
unblocking rate (k ) was 5.4 x 10’ exp( V/47) set I. Our cor- 
responding values (in 0.2 mM Mg) are 1.06 x 10h exp(- V/21) 
M I set I and 2.36 x IO’ exp( 1//50) set I. The differences can 
be ascribed, at least in part, to temperature. As described above, 
our 3-state rate constants also depend on Mg concentration 
because, as determined with the 4-state model, the proportion 
of time the channel stays in Bl relative to B2 is dependent on 
Mg concentration; this makes a strict comparison of the results 
difficult. They do report interruptions in nominally zero Mg 
solutions, but these closures were independent ofvoltage as well. 
At -60 mV the mean K,, for Mg determined from the micro- 
scopic rate constants was 73 FM, which is the same as the 72 
/IM given by Ascher and Nowak (1988). At 0 mV, however, our 
results diverge; 1.8 mM in our hands, 8.8 mM in theirs. 

According to scheme 2, the constant S, (where R is a2 or h2 
here) in Equation (6) would (if the entire voltage dependence of 
blocking arises from the movement of Mg ions through the 
membrane held over a single energy barrier to a single binding 
site) be 

where ,f, is the fraction of the membrane field through which 
the ion must step to reach the barrier peak, z = 2 (the valence 
of Mg) and F/RT = 25.4 mV at room temperature (F is the 
Faraday constant; R, the gas constant, and T, the temperature 
in Kelvin). Solving this equation for,f, and using the values of 
S,, and S,,, from Table 1. we find from S,? that an ion on the 
outside must step through 0.57 of the membrane field to reach 
the barrier peak and then, from S,:, through 0.22 of the mem- 
brane field to reach the binding site. The binding site is then 
about 80% of the way through the membrane field. 

We have shown that the 3-state model is adequate for higher 
Mg concentrations, and that the 4-state scheme will describe all 

of our results except the low-amplitude second-exponential 
component in the open time distributions which occurs in low 
Mg concentrations and at positive voltages. We turn now to a 
physical interpretation of these formal kinetic schemes. 

Two different interpretations of our results are possible. First 
(Theory l), we might suppose that interruptions mainly result 
from Mg ions that enter the pore and block it. On this theory. 
the voltage dependence of the interruption rate and the duration 
of interruptions arises because the Mg ions must pass part way 
through the membrane field to arrive at their blocking site. This 
blocking site could be within the pore itself. On this theory, the 
channel must be able to close with a Mg ion in the blocking 
site. and we must suppose that some other mechanism. perhaps 
a conformational change, is responsible for interruptions in the 
absence of Mg ions. 

Second (Theory 2) the interruptions could be the result of a 
voltage-dependent conformational change. In this case, the ef- 
fect of Mg ions would be explained by supposing that they must 
bind at some site to facilitate the conformational change. The 
picture here would be much like that for the calcium-activated 
potassium channel where calcium shifts the gating function along 
the voltage axis, but the voltage dependence is thought to reside 
in the protein conformational change rather than derive from 
calcium ions moving through the membrane field in order to 
reach their binding site (Magleby and Pallotta. 1983: although 
see Mocrydlowski and Latorre, 1983). 

Both theories are consistent with the 4-state model presented 
above, but the second theory accommodates the Mg-indepen- 
dent interruptions more easily. Similar interruptions, however, 
have long been known to occur in situations where no blocking 
entity can be identified. Even when a channel block does occur. 
as with local anesthetic block of the ACh receptor channel, for 
example (Neher and Steinbach, 1978; Neher, 1983), what are 
apparently nonblock interruptions also occur. Thus, the pres- 
ence of interruptions without an identified blocker need not be 
taken to strongly favor the first theory. 

The crucial distinction between the 2 theories is that the pos- 
tulated binding site that facilitates a conformational change in 
Theory 2 should saturate for sufficiently high Mg concentrations. 
whereas Theory 1 predicts that blocking rates increase linearly, 
without limit, as Mg concentration is increased. If Theory 1 is 
correct, the effect of any Mg concentration can be counteracted 
with sufficiently large voltage. 

The fact that blocking rate increases linearly, at a given volt- 
age, with Mg concentration favors Theory 1, but not in a de- 
finitive way. Even ifTheory 2 were correct, it might be expected 
that the effect of Mg would be linear over a narrow range, and 
the single-channel recording experiments are possible only up 
to about 0.2 mM Mg, about one-fifth of physiological concen- 
trations, so the saturation of a binding site might well not be 
detected at the concentrations we have used here. In order to 
distinguish between the 2 theories, one would have to increase 
Mg concentrations into the range where the Theory 2 Mg binding 
site might be expected to be blocked. Unfortunately, single- 
channel observations are not feasible at Mg concentrations much 
above the 0.2 mM we have used because the interruption rate 
becomes so great that the brief openings cannot be measured 
with sufficient accuracy. 

In summary, our data are consistent with either physical in- 
terpretation, and we cannot, with information at hand, strongly 
favor one theory over the other. We can conclude, however. 
that the 3- and 4-state models described above provide, within 
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experimental error, an accurate account of the single-channel References 
behavior. 

Ascher P, Nowak L (1988) The role of divalent cations in the 

Appendix 
The 4-state model (13) is a simple extension of the 3-state scheme (2). 
In this appendix we give the equations relating the mean open time, 
mean interruption time, and mean number of interruptions per burst 
for the 2 models. 

The rate of leaving the open state in the 3-state model is a and the 
corresponding rate for the 4-state model is a, + u2, the sum of the 
leaving rate for the 2 states (1 and 2). The transition rate from blocked 
to open is b for the 3-state model, whereas the corresponding rate for 
the 4-state model is b,a,l(a, + a,) + b,a,l(u, + a1); in this last expression, 
the rate of leaving each blocked state is weighted by the probability that 
the particular state had been entered. The closing rate from the blocked 
state is B for the 3-state model and B,u,/(u, + a,) + &~,/(a, + a,) for 
the 4-state model. I f  the following equations are made 

u=u, +a> (Ala) 
b = (b&z, + b,a,)l(u, + a,) 
A=A 

and 
B = @,a, + B,u,)l(u, + a,) (Al4 

then the mean open time (r,,) and mean interruption time (r,) given by 
(9) will be the same for both models. 

The open time distribution will be a single exponential with a time 
constant r,, for both models as given by (8); the interruption time dis- 
tribution will, however, be a double exponential with time constants 
l/(b, + B,) and I/(& + B,) and relative amplitudes b,lb and b,/b for 
the 4-state model, rather than the single-exponential distribution for the 
3-state model [Eq. (S)]. I f  the 2 time constants for the 4-state model 
interruption distribution are not widely separated, then the 2-time-con- 
stant distribution would be very hard to distinguish from the single time 
constant distribution predicted by the 3-state model. If, on the other 
hand, the 2 time constants were widely separated, either the faster one 
would be too rapid to be resolved or the longer one would appear to 
be a closure, and again the interruption times would seem to be dis- 
tributed according to Equation (8). The interruption time distribution, 
then, is unlikely to be helpful in distinguishing between the 2 models. 

The mean number of interruptions per burst N is related in Equation 
(1 I) to the probability 4 that a blocked state will be entered when the 
open state is left; then 1 - 4 is the probability that, when a transition 
out of the open state occurs, the channel will enter the closed state 
without reopening. With the identification given in (Al), Equation (12) 
is correct for the 4-state model because ~/(a + A) is the probability that 
a transition out of the open state will be into a blocked state and bl(b 
+ B) is the probability that the open state will be reentered when the 
blocked state is left. The distribution of number of openings per burst 
[Eq. (l)] is therefore the same for both the 3- and 4-state models. 

The 3- and 4-state models are thus formally equivalent for a fixed 
set of rate constants except for the interruption time distribution, and 
limitations in the time resolution inherent in our system make it unlikely 
that this distribution can be used to distinguish between the 2 models. 
The only practical way of deciding which model to prefer is to change 
Mg concentration and voltage and then to examine the dependence of 
predicted quantities on these variables as we have described in the text. 
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