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Isolation of the Progenitor Cells of the Sympathoadrenal Lineage 
from Embryonic Sympathetic Ganglia with the SA Monoclonal 
Antibodies 
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Our previous articles in this series described the production 
of five monoclonal antibodies (SAl-5) that bind to adrenal 
chromaffin cells and to cells in embryonic sympathetic gan- 
glia and adrenal primordia (Carnahan and Patterson, 1991), 
and the downregulation of the sympathoadrenal (SA) anti- 
gens in vitro as neuronal markers begin to be expressed 
(Anderson et al., 1991). These results support the hypoth- 
esis that sympathetic neurons and adrenal chromaffin cells 
are derived from a common embryonic progenitor that dis- 
plays both neuron- and chromaffin cell-specific markers. We 
have taken advantage of the fact that at least some of the 
SA antigens are expressed on the cell surface to isolate SA+ 
cells from embryonic day 14.5 rat superior cervical, sym- 
pathetic ganglia by fluorescence-activated cell sorting. This 
population of cells is significantly enriched in the expression 
of markers (tyrosine hydroxylase and neurofilament) found 
in the putative progenitors in situ. Growth in glucocorticoid 
maintains the expression of the SA antigens in the sorted 
cells and induces the chromaffin cell marker enzyme phen- 
ylethanolamine Mmethyl transferase. In contrast, growth of 
the sorted cells in basic fibroblast growth factor, NGF, and 
insulin results in the rapid loss of SAl expression and the 
outgrowth of neurites. The ability to manipulate the fate of 
the SA+ cells in vitro confirms the suggestion from the in 
vivo observations that the SA+ cells in the ganglia are at 
least bipotential progenitors, capable of differentiating along 
the chromaffin or neuronal pathways. 

The three derivatives of the sympathoadrenal (SA) lineage, sym- 
pathetic neurons, small intensely fluorescent (SIF) cells, and 
chromaffin cells, are all derived from a common source, the 
neural crest (Weston, 1963; Le Douarin and Teillet, 197 1, 1974; 
Pearse et al., 1973). While these derivatives can be distinguished 
by a number of morphological and molecular criteria, they can 
be interconverted using the appropriate developmental signals. 
Doupe et al. (1985b) showed that SIF cells isolated from neo- 
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natal rat sympathetic ganglia can give rise to neurons in the 
presence of NGF or to chromaffin cells in the presence of a high 
concentration of glucocorticoid. Fully differentiated chromaffin 
cells from neonatal or adult rats can also be converted into 
neurons in the presence of NGF (Unsicker et al., 1978; Doupe 
et al., 1985a); in this case, chromaffin cells are converted into 
neurons by first going through an SIF cell-like intermediate 
stage. These results suggested that all three derivatives might 
be derived from a common progenitor in vivo (Landis and Pat- 
terson, 1981; Doupe et al., 1985a). 

This hypothesis was further supported by the findings of An- 
derson and Axe1 (1986) in rat, and Vogel and Weston (1990) in 
chick, who demonstrated that neuronal markers are expressed 
by cells migrating from embryonic sympathetic ganglia into the 
adrenal gland and that these markers are lost as chromaffin cells 
differentiate. This suggested that the same progenitors may give 
rise to both neurons and chromaffin cells. In fact, Anderson and 
Axe1 (1986) were able to isolate from embryonic adrenal me- 
dullae progenitor cells that can differentiate into sympathetic 
neurons or chromaffin cells, depending on the presence of NGF 
or glucocorticoid, respectively. Seidl and Unsicker (1989) ob- 
tained a similar result using a different cell isolation approach. 

Not only are neuronal markers expressed by cells in the em- 
bryonic adrenal medulla, but conversely, chromaffin cell mark- 
ers are found, early in embryonic development, on virtually all 
cells of sympathetic ganglia (Anderson et al., 1991). These re- 
sults raise the possibility that both adrenal medulla and sym- 
pathetic ganglia initially contain bipotential progenitor cells that 
transiently coexpress both neuronal and chromaffin cell mark- 
ers. Moreover, these markers are eventually expressed in a mu- 
tually exclusive manner as the cells further differentiate along 
one or the other pathway. We here use three of the SA mono- 
clonal antibodies described in an accompanying article (Car- 
nahan and Patterson, 199 1) to isolate by fluorescence-activated 
cell sorting (FACS) a bipotential progenitor population from 
embryonic sympathetic ganglia. These cells acquire chromaffin 
cell properties when cultured in medium containing glucocor- 
ticoid and acquire neuronal properties when cultured in medium 
containing basic fibroblast growth factor (bFGF), NGF, and 
insulin. These data further support the idea that chromaffin cells 
and sympathetic neurons derive from a common embryonic 
progenitor and indicate that this precursor initially coexpresses 
markers characteristic of two of its differentiated derivatives. 

Materials and Methods 
Preparation of cells for sorting. Dissection of 12 timed pregnant rats 
was necessary to obtain enough cells to be plated after FACS. At early 
stages of development [embryonic day 14 (E 14)], the sympathetic gan- 
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Table 1. Intracellular versus cell surface SA staining in developing sympathetic ganglia 

% of cells positive for SA 

Ell.5 E13.5 E14.5 E16.5 E18.5 PO 

Intracellular SA 1 100 55-60 25-30 15-20 3-5 <l 
Surface SA(1,2,4) 0* 3-5 8-15 15-20 30 5-10 

Cells from ganglia of various ages were dissociated and either stained with the antibody mixture SA( 1,2,4) as living cells 
(Surface SA), or fixed and permeabilized and stained with SAl (Intracellular SA). The exception (*) is El 1.5 where 
surface staining was done at El 2.5 and showed no staining even then. Because El 1.5 ganglia could not be dissected free 
of other tissues, the intracellular staining data were obtained from frozen sections double stained with TH. The data are 
the ranges of percentages of TH+ cells that are SA+ (from two independent experiments). PO, day of birth. 

glia are barely larger than the sympathetic chain of which they are a 
part. To ensure that we were indeed dissecting superior cervical ganglia, 
the first group of dissected ganglia was frozen and sectioned, and positive 
staining for both tyrosine hydroxylase (TH) and the SAl-5 antibodies 
was confirmed. The standard preparation involved dissecting 250-300 
superior cervical ganglia from E14.5 embryos that were collected in 
L-15-air plating medium (Hawrot and Patterson, 1979). Ganglia were 
transferred with a Pasteur pipette into a sterile, siliconized 1.7 ml mi- 
crocentrifuge tube (PGC Scientifics), washed in calcium/magnesium- 
free Hanks’ balanced salt solution (GIBCO), resuspended in 1 mg/ml 
collagenase (Worthington Biochemical Corp.), and incubated for 30 min 
at 37°C. The cells were dissociated using gentle pipetting with siliconized 
pipette tips (PGC Scientifics). The cells-were then washed in L-15-air, 
10% fetal calf serum (FCS): resusoended in 100 ul of 50% FCS. 50% 
SA( 1,2,4) (1: 1: 1) anticody ‘hixturk in hybridoma medium; and’incu- 
bated 30 min at room temperature in the same microcentrifuge tube. 
One milliliter of L- 15x0, (Hawrot and Patterson, 1979) was added to 
dilute the antibodies, and the cells were centrifuged for 5 min at 100 x 
g. The pellet was washed again using the same procedure. A fraction of 
the dissociated cells was used as a negative control in which hybridoma 
medium was substituted for the antibody mixture. Both control and 
SA+ cells were resuspended in a mixture of 50% FCS, 10% biotinylated 
horse anti-mouse (Vector) antibodies at a final dilution of 1: 100, in a 
volume of 100 pl. After 30 min incubation at room temperature, the 
cells were washed once with L-15-C0, plus 5% FCS and twice with 
L-l 5-C0, without serum. They were then incubated in 100 ~1 of a 
filtered solution of streptavidin conjugated to fluorescein isothiocyanate 
(Amersham). After 20 min at room temperature, cells were washed and 
filtered through a sterile nylon mesh to remove clumps. 

These steps were performed under sterile conditions, and the tubing 
in the cell sorter itself was rinsed with sterile PBS. At this stage of 
development, about 8-10% of the ganglionic cells display detectable 
surface staining using the mixture of three antibodies. We routinely used 
the 6-7% brightest-staining cells (see Fig. 3). 

Plating the sorted cells. Many different culture conditions and sub- 
strata were tested for their efficacy in supporting the attachment and 
growth of the sorted cells. Substrata included various combinations of 
laminin, polylysine, fibronectin, collagen, Matrigel, extracellular matrix 
secreted by bovine cornea1 endothelial cells, and Vitrogel, as well as 
cells from the Schwannoma cell line P2TD3, the muscle cell line L6, 
and primary heart cells. The growth factors tested in various combi- 
nations included primary heart cell-conditioned medium, insulin, NGF 
(7S, 1 &ml; Hawrot and Patterson, 1979), FGF (R & D Systems; 10 
rig/ml), insulin (Sigma; 2.5 &ml, fresh solution for each experiment), 
dexamethasone (Sigma; 10m6 M), extract of rat embryo sympathetic chain, 
chick embryo extract, fetal calf serum, and adult rat serum. The most 
favorable surfaces were air-dried collagen (with cells plated at very high 
density) and primary rat heart cells treated with mitomycin C (to prevent 
further division). Heart cell coculture yielded good attachment even at 
low cell plating density (300 cells per 10 mm well). The drawback of 
the heart cell coculture condition was that about 50% of the plated cells 
extended neurites after 10 hr in the absence of added growth factors. 
For the collagen surfaces, 100,000 SA+ cells were plated into four wells 
of 2 mm diameter. 

Hearts from El8 embryos were dissected and enzymatically disso- 
ciated in 1 mg/ml collagenase dissolved in Hanks’ buffer, pH 7.4. After 
30-40 min at 37”C, cells were dissociated by gentle trituration and 
washed several times in L-15-C0, medium containing 5% rat serum. 
The plating density was calculated to cover ?/4 of the surface of the 
collagen-coated Aclar well (Hawrot and Patterson, 1979). The heart 

cells were grown for 2-3 d to form a monolayer, treated with mitomycin 
C (Sigma) at 10 &ml for 1 hr at 37”C, and rinsed carefully with L- 15- 
CO, prior to plating the sorted SA+ cells. 

Cells were stained and counted as described in an accompanying 
article (Camahan and Patterson, 199 1). 

Results 
Intracellular staining with the SA antibodies develops before 
cell surface staining 
Virtually all TH+ cells in early (E 11.5) sympathetic ganglia are 
positive for all five SA antibodies, and this staining appears to 
be cytoplasmic (Camahan and Patterson, 1991). Cell surface 
staining with these antibodies develops more gradually (Table 
1); at E15.5, SAl and SA2 stain only about 15% of freshly 
dissociated, unfixed cells (the procedure for surface staining). 
Staining by SA4 and -5 appears about E16.5, and SA3 staining 
begins on El 7, while SA3 never seems to stain the cell surfaces 
well at all. Curiously, as the surface staining becomes apparent, 
cytoplasmic staining begins to decline (Table 1). Thus, 30% of 
cells from E18.5 ganglia are positive for surface staining with 
SA(1,2,4), while only 3-5% of the cells display cytoplasmic 
staining for SAl (Table 1). It is of interest that those cells that 
express detectable surface SA( 1,2,4) also express the highest 
levels of staining with anti-TH antibodies (Fig. 1). The weak 
surface staining of cells from early ganglia raises difficulties for 
using the SA antibodies to sort cells on the FACS. However, 
since distinct epitopes are recognized by the various SA anti- 
bodies (Camahan and Patterson, 199 l), several ofthe antibodies 
can be used together in order to enhance labeling. Using SA( 1,2,4), 
we demonstrated clear surface staining of about 5% of the cells 
in E13.5 sympathetic ganglia even though at this stage no de- 
tectable surface staining is apparent using each of the antibodies 
separately. Double staining of this sorted population with anti- 
TH and anti-neurofilament (NF) antibodies reveals that virtu- 
ally all of the cells express each of these antigens as well as very 
strong intracellular staining for all of the SA antibodies (data 
not shown). Nonetheless, the absolute number of cells obtained 
from sorting El 3.5 ganglia is quite small, so E 14.5 ganglia were 
used for further study. 

Characterization of cells from E14.5 sympathetic ganglia 

Dissociated cells from E 14.5 sympathetic ganglia were charac- 
terized by double labeling with several different markers. The 
SAl antibody can be used as a chromaffin cell marker in this 
lineage (Camahan and Patterson, 199 l), anti-NF antibodies [ 140 
kDa (Drgger et al., 1983)] are used to better visualize neurite- 
bearing cells, the B2 antibody is used to identify a neuronal 
precursor (Anderson and Axel, 1986; Anderson et al., 1991), 
and anti-TH antibodies distinguish early sympathetic neurons 
and chromaffin cells from glial cells and fibroblasts. Dissociated 
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SURFACE SA+ 

SAl PHASE 
Figure 1. Surface SA+ cells display bright TH staining. Cells from El45 day superior cervical ganglia were dissociated, surface stained with the 
SA(1,2,4) antibody mixture (A), and then fixed, permeabilized, and double stained for TH (B). Nearly all SA+ cells are brightly stained for TH. 
These cells were also separated into SA(1,2,4)+ and SA( 1,2,4)- fractions by FACS, as described for Figure 2, and then fixed, permeabilized, and 
stained for intracellular SA 1 (C, E). As demonstrated quantitatively in Table 2, most of the cells in the SA( 1,2,4)+ fraction are SA 1 + (C, D), while 
most of the cells in the SA( 1,2,4)- fraction are SA- (I$ P). Scale bars: A, 50 pm for A and B, C, 30 pm for C-F. 

cells were stained with these markers before and after separation at this stage in development. About 10% of the, SA+ cells also 
on the FACS using the SA(1,2,4) antibody mixture. As sum- express the B2 marker, a finding consistent with double staining 
marized in Table 2, the SAl+ population is composed of cells in situ (Anderson et al., 199 1). The TH staining of the B2+ cells 
that are highly enriched for NF, TH, and SAl intracellular stain- is much less strong than the rest of the SA+ population, which 
ing. This population represents 30-40% of the cells in the ganglia is consistent with the idea that B2 labels a more advanced stage 
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Figure 2. FACS profiles of E14.5 ganglion cells using the SA(1,2,4) antibody mixture. E14.5 superior cervical ganglia were dissociated, incubated 
with either the SA( 1,2,4) antibody mixture or culture medium, and subjected to FACS. Plotted on the ordinate is relative fluorescence intensity, 
and on the abscissa is the relative size of the cells. The left panel is a control for nonspecific binding of the fluorescence-labeled secondary antibody, 
in which cells were incubated with culture medium. The right panel shows the profile of cells incubated with the SA antibodies. Cells in box I were 
used for further experiments as the SA+ fraction; these represent the 5-7% brightest-staining cells. Cells corresponding to those in box 3 were used 
in some experiments as the SA- fraction. 

of differentiation in the neuronal pathway (Anderson and Axel, 
1986). Therefore, it was possible to divide the cells of E14.5 
ganglia into four groups: (1) SAl+ TH+ NF+ B2-, (2) SAl+ 
TH+(weak) NF+ B2+, (3) SA- TH+ NF+ B2+, and (4) SAl- TH- 
NF- B2-. 

Growth of sorted cells on collagen. The SA+ cells attached 
poorly to the usual air-dried collagen surface, so extreme caution 
was necessary in moving the dishes for microscopic observation. 
In addition, the cells had to be plated at high density, and the 
growth factors under study, bFGF, NGF, and insulin or dexa- 
methasone, had to be added from the start so that the mediuni 
was not changed at later times. At 10 hr after plating, nearly all 
cells were small and round; few flat cells could be identified 
(Table 3). Many more flat cells were observed in the SA- pop- 
ulation, and some of the cells in this population extended neu- 
rites spontaneously (data not shown). SA+ cells treated with 
bFGF, NGF, and insulin displayed no obvious morphological 
differences from those treated with dexamethasone at this stage. 

Growth and dlrerentiation of SAl+ cells in culture 
Sorting SA+ cells. For each experiment, the cells from about 
300 E 14.5 sympathetic ganglia were dissociated and stained with 
the SA( 1,2,4) antibody mixture. A typical FACS profile is shown 
in Figure 2; the upper boxes indicate the population used as the 
SA+ fraction. These cells expressed the highest level of SA sur- 
face staining and represented about 7% of the original lo6 cells. 

Table 2. Antigenic characterization of E14.5 sympathetic ganglion cells 

% of cells positive for markers 
Cells 

Unsorted 
Sorted 

TH B2 SAl NF 

50 ND 27 50 

SA( 1,2,4)+ 95 10 90 92 
SA( 1,2,4)- 35 ND 8 35 

Cells of E14.5 sympathetic ganglia were dissociated and either stained immediately with various antibodies or separated 
by FACS after incubation with the SA(1,2,4) mixture, and subsequently stained for the other markers. Staining with the 
B2 antibody was carried out on living cells without fixation. Staining with the TH, SAl, and NF antibodies was carried 
out on aliquots of the cells after fixation and permeabilization; these data are for cytoplasmic staining. The numbers are 
expressed as a percentage of the unsorted, SA+, or SA- populations. Thus, for example, 27% of the total population is 
positive for cytopfasmic SAl staining, while 90% of the cells expressing SA(1,2,4) on their surfaces are positive for 
cytoplasmic SAl staining. Since separation of the SA+ and SA- populations is not perfect, the numbers from the top 
row are not identical to those that can be computed from the bottom two rows. The values shown are from a single 
experiment and are representative of five such experiments. ND, not done. 
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Table 3. Development of SA+ cells in the absence of other cells 

Dexamethasone 

10 hr postplating 
Spherical cells 297 
Flat cells 6 

48 hr postplating 
Chromaffin-like cells 262 
Neuron-like cells 2 
Flat cells 64 

bFGF, NGF, insulin 

396 
34 

14 
822 

99 

SA+ cells were obtained by dissociating E14.5 sympathetic ganglia, separating the cells by FACS, and plating them on 
collagen-coated dishes in the presence of bFGF, NGF, and insulin, or dexamethasone. At 10 hr postplating, the cells 
were analyzed by phase microscopy, and all of the cells were placed in one of the two categories. After 48 hr, the cells 
were characterized again and grouped according to their morphology and, in some experiments, their immunohisto- 
chemical markers. Chromaffin cells were characterized as being small round cells that maintain SA staining and express 
high levels of TH staining. This type of cell also expresses PNMT staining in cultures that were carried for 5 d in 
dexamethasone. Cells characterized as neurons lost SA staining, grew NF+ neurites, and displayed low levels of TH 
staining. These data are from one set of dishes that was analyzed at 10 and again at 48 hr postplating. Therefore, the 
protein growth factors stimulated mitosis as the total cell numbers increased from 430 to 835. In dexamethasone, in 
contrast, the total cell number remained approximately constant. 

Cells were observed 48 hr after plating by phase-contrast mi- 
croscopy, fixed, and stained for NF and SAl. Although there 
were only two dishes for each growth condition, the experiment 
was reproduced five times, yielding a similar difference each 
time between the dishes treated with dexamethasone versus 
bFGF, NGF, and insulin. The results shown in Table 3 are 
important because the number and morphology of the cells at 
the beginning of the analysis (10 hr postplating) were very sim- 
ilar in the two conditions. In dexamethasone, cell number did 
not change significantly by 48 hr, nor did the morphology of 
most of the cells. They also continued to express SAl and TH 
at the high levels appropriate for chromaffin cells (Fig. 3). In 
some cases, cell attachment was maintained for 5-7 d. When 
these cultures were stained with an anti-phenylethanolamine 
N-methyl transferase (PNMT) antibody, many of the cells grown 
in dexamethasone displayed high levels of this chromaffin cell 
antigen (Fig. 4B), demonstrating their complete differentiation 
into chromaffin cells. There was an increase in the number of 
flat cells, but this was somewhat variable between experiments. 
Process outgrowth by the SA+ cells is minimal in the presence 

Table 4. Development of SA+ cells on heart cells 

10 hr postplating 

Neuron-like Chromaffin-like 

(no growth factors) 
3 d postplating 

47% + 4 53% 27 4 

FGF, NGF, insulin 65% +- 3 35% k 3 
Dexamethasone 12% + 3 89% k 6 

SA+ cells were obtained by dissociating E14.5 sympathetic ganglia, separating 
them by FACS, and plating them on monolayers of mirotically arrested heart cells 
in the absence of added protein growth factors and glucocorticoid. At 10 hr cells 
were analyzed for their phase microscopic appearance. Small spherical cells cor- 
responded to cells that, in other experiments where immunohistochemistry was 
carried out, maintain their SA staining and express high levels of TH. These are 
termed chromaffin-like. Cells termed neuron-like have grown processes and cor- 
respond to cells with high levels of NF, low TH, and no SA staining. At 10 hr, 
these same cultures were given medium containing either dexamethasone or a 
mixture of three protein growth factors. At 3 d postplating, these cultures were 
again analyzed by phase microscopy and, in some cases, by immunohistochem- 
istry. The results are expressed as the percentage of the spherical cells lying on 
top of the sparse heart cell monolayer that express each of the phenotypes. The 
numbers are the values obtained in three different experiments, each with duplicate 
dishes, &SEM. 

of dexamethasone (Fig. 5B). In contrast, glucocorticoid did not 
block process outgrowth by the SA- cell population (cultured 
separately; Fig. 5C). This is consistent with the notion that loss 
of SA expression connotes further progression along the neu- 
ronal differentiation pathway. 

In contrast, a dramatic change occurred in the cells grown in 
the protein growth factors. Virtually all of the originally SA+ 
cells began growing neurites, lost their SAl staining, and ex- 
pressed lower levels of TH staining (Fig. 3B,D,F). Unlike the 
cells grown in steroid, NF expression was maintained (Fig. 5). 
The protein growth factors also stimulated mitosis, approxi- 
mately doubling cell number during this period. The mitotic 
effect was also apparent in the formation of colonies of cells. 
The increase in cell number was not enough to explain the 
phenotypic conversion, however. That is, a small minority of 
cells did not multiply at very high frequency and grow neurites. 
On the contrary, most of the initially round, SA+ cells were 
observed to extend neurites in the protein growth factors. Thus, 
we conclude that most ofthe SA+ population either can maintain 
the rounded morphology and SAl staining characteristic of 
chromaffin cells and acquire the PNMT chromaffin cell marker, 
or can respond to protein growth factors by losing SAI staining, 
growing neurites, and maintaining NF expression characteristic 
of neurons. 

One interesting and consistent finding in the dishes treated 
with the protein growth factors was the presence of small groups 
of round cells without neurites, still weakly stained for SAl . It 
is possible that these cells represent the SIF lineage developing 
in a predominantly neuronal environment. 

Culture on heart cells. The SA+ cells from E14.5 ganglia attach 
to heart cell monolayers in rat serum and in the absence of 
added growth factors. Therefore, this paradigm has an advan- 
tage over that in the previous set of experiments where cells 
were initially plated into medium containing protein growth 
factors or dexamethasone. After 10 hr postplating, the cocultures 
were examined by immunohistochemistry, and the cells were 
characterized as belonging to one of three categories: flat, neu- 
ron-like, or chromaffin-like. The data (Table 4) are presented 
as the percentage of the cells in each dish belonging to each 
category so that the data from three separate experiments could 
be combined. Flat cells were primarily SA- TH- NF-. This 
population was composed of heart cells and a few contaminating 
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Figure 3. Environmental control of antigenic and morphologic phenotypes. After isolation by FACS, SA+ cells were grown in either a mixture of 
bFGF/insulin/NGF (FIN, B, D, F) or dexamethasone (A, C, E). After 5 d, the cultures were fixed, permeabilized, and stained for chromaffin cell 
properties (intracellular SAl+ and bright TH, A, C) or neuronal markers (SAl- and weak TH, B; D) as well as the presence of neurites (0. Scale 
bar, 50 pm. 

SA- cells from the sorting procedure. Spherical cells without of the SA+ population, and spherical cells the other third. This 
neurites made up about half of the SA+ cells in the absence of is the same type of shift in phenotype observed in the cultures 
added growth factors (Table 4). Cells with neurites made up the grown on collagen, in the absence of other cell types. The major 
other half of the non-flat cell population. When these cultures difference between the two culture conditions in the develop- 
were shifted into a medium containing bFGF, NGF, and insulin ment of the SA+ cells is that the sorted cells grow neurites in 
and analyzed 3 d later, neurite-bearing cells made up two-thirds the absence of added protein growth factors when plated on 
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heart cells. In addition, dexamethasone did not strongly induce 
PNMT expression in the heart cell cocultures, even after 1 week 
in culture. 

Discussion 
Previous observations, both in culture and in viva, provided 
evidence that embryonic sympathetic ganglia, like embryonic 
adrenal medullae, contain bipotential progenitor cells that can 
differentiate into neurons or chromaffin cells, depending on the 
environment in which they develop, We produced several 
monoclonal antibodies (SAl-5) that bind to antigens both in 
the cytoplasm and on the surfaces of the TH+ cells of these 
ganglia (Camahan and Patterson, 199 1). The SA antibodies en- 
abled us to isolate progenitor cells from the ganglia in order to 
analyze their developmental potential and to identify factors 
that control their phenotypic decisions in culture. Separation of 
the SA+ cells by FACS proved important because 40% of the 
unfractionated cell population does not express high levels of 
TH and may not be part of the SA lineage. All of the sorted, 
SA+ cells are TH+ and NF+. The SA+ cells from E14.5 ganglia 
are not a homogeneous population, however. Approximately 
10% of the cells are B2+ and express lower levels of TH than 
the other SA+ cells. These properties suggest that this subpop- 
ulation is further along the neuronal differentiation pathway 
than the rest of the cells, consistent with studies of B2+ cells 
isolated from embryonic adrenal glands (Anderson and Axel, 
1986; Anderson et al., 199 1). 

The cells displaying the highest levels of surface staining with 
a mixture of three SA antibodies were selected for growth in 
cell culture, and two conditions were employed. Plating the cells 
on collagen surfaces permitted us to study SA progenitors in the 
absence of other cell types, but attachment was poor. Therefore, 
the growth factors under study, bFGF, NGF, and insulin, or the 
synthetic glucocorticoid dexamethasone was added to the initial 
plating medium so that the cells would not be disturbed by 
changing the medium at a later point. In cases where the same 
number of SA+ cells survived the initial 10 hr postplating period, 
it was observed that nearly all of the cells responded to each of 
the conditions by assuming either a neuronal (in protein growth 
factors) or a chromaffin (in dexamethasone) phenotype. This 
result is consistent with the identification of SA+ cells as bipo- 
tential progenitors that can respond to either type of influence. 
It is also possible, however, that the use of different plating 
media could select predetermined subpopulations of SA+ cells 
for differential survival. By this hypothesis, predetermined neu- 
ronal precursors would attach and survive in the protein growth 
factor-containing medium, and the predetermined chromaffin 
precursors would survive in the dexamethasone-containing me- 
dium. 

To circumvent this problem, SA+ cells were also plated on a 
more adhesive surface consisting of mitotic-arrested heart cell 
monolayers. In this case, added growth factors were not required 
during the initial culture period, so sister cultures were plated 
and the cells attached under identical conditions. This paradigm 
yielded results qualitatively similar to those obtained using the 
collagen surface; dexamethasone promoted the chromaffin phe- 

Figure 4. Glucocorticoid promotes chromaffin cell differentiation. Af- 
ter is01 lation by FACS, SA+ cells were grown for 5 d on collagen-coated 
dishes as in Figure 3 and double stained for intracellular SAl (A) and 
PNM’I r (B) after fixation and permeabilization. In this example, a tightly 

adhering group of cells are stained nuclei are visible in A, but the bright 
staining in B obscures them. The majority of such cells were brightly 
stained by the PNMT antibody. Scale bar, 35 pm. 
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Figure 5. NF expression by SA+ and 
SA- cells in response to protein growth 
factors or dexamethasone. SA+ (A, B) 
and SA- (c)cells were isolated by FAGS, 
grown on collagen-coated surfaces for 
48 hr and stained for NF. In the pres- 
ence of bFGF. insulin. and NGF CFZN. 
A), SA+ cultures exhibit abundant NF+ 
processes. Such processes are not found 
in SA+ cultures grown in dexametha- 
sone (DE?!, B). In contrast, many SA- 
cells spontaneously grow NF+ processes 
even in the presence of dexamethasone 
(C). These differences are quantified in 
Table 3. Scale bar, 50 pm. 
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Figure 6. Diagram of the SA lineage 
consistent with available data. All three 
products of this lineage are derived ul- 
timately from the neural crest; thus, the 
SA progenitor is depicted as arising from 
the crest. The crest also gives rise to 
numerous other lineages, not shown 
here. In addition, the number of dis- 
tinct steps leading to the differentiation 
of the progenitor is not known but is 
depicted by a single arrow. The various 
cell types delineated here display char- 
acteristic sets of antigen, as described 
in the brackets, and the factors that pro- 
mote differentiation along the several 
pathways are indicated next to the ar- 
rows. The stages of development cor- 
resuondina to the various cell types are 
listed on the left. N, a combinaiion of 
net&es, NF, and SCG 10 staining; GC, 
glucocorticoid; PO, day ofbirth. All oth- 
er abbreviations and symbols are as de- 
scribed in the text. 

PO 

NEURAL CREST 

Svmnathoadrenal Progenitor 
[SA+TH++N+B2-PNMT-] 

Insulin 
bF/ 
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1 NGF 

SvmDathetic Neuron Cell SIF Chromaffin Cell 
[SA-TH+N++B2-PNMT- ] [SA-TH++N-B2-PNMT-] [SA++TH++N-B2-PNMT+] 

notype and protein growth factors promoted the neuronal phe- 
notype. The heart cells themselves provided a neuronal differ- 
entiation influence on the plated cells, so that the quantitative 
results were not as decisive as those obtained on the collagen 
surfaces. Nonetheless, the two sets ofexperiments taken together 
provide strong support for the existence of a bipotential, SA 
progenitor population in embryonic sympathetic ganglia. Thus, 
it seems likely that a common progenitor populates both the 
embryonic ganglia and the adrenal gland. It is interesting that 
the progenitor expresses both neuronal (NF) and chromaffin 
(SAl-5) differentiation markers prior to assuming its final phe- 
notype in situ (Anderson et al., 1991). Thus, signals in the ad- 
renal and ganglionic environments act to downregulate markers 
characteristic of the phenotype that is inappropriate for each 
environment. This mechanism could be relevant for the plas- 
ticity seen in these derivatives in adulthood (Anderson, 1989). 

The protein growth factors bFGF and NGF were chosen to 
promote neuronal differentiation of SA progenitors because pri- 
or work, both in culture and in vivo, had indicated that these 
proteins may play a role in neurite outgrowth in the SA lineage. 
Of particular relevance were the findings that chromaffin cells 
from neonatal rats and a SA progenitor cell line initiate neuronal 
differentiation in response to bFGF and subsequently develop 
a dependence on NGF for further maturation and survival 
(Stemple et al., 1988; Birren and Anderson, 1990). Insulin was 
also included in this mixture because it can stimulate prolifer- 
ation of neuronal precursors from embryonic rat sympathetic 
ganglia and is necessary for the survival of postmitotic sym- 
pathetic neurons in vitro (Wolinsky et al., 1985; DiCicco-Bloom 
and Black, 1988; DiCicco-Bloom et al., 1990). The synthetic 
glucocorticoid dexamethasone was employed to promote the 
chromaffin cell phenotype because previous work established 
such a role for this hormone (Landis and Patterson, 1981; An- 
derson, 1989; Patterson, 1990). The results from the present 
study further support the roles suggested for these protein and 
steroid factors. 

The evidence that the SA antibodies label both chromaffin 
cells and bipotential SA progenitor cells supports the notion that 
these two cell types are quite similar. Both cells are thought to 
express high levels of TH (Jacobowitz, 1970; Taxi, 1979; Taxi 
et al., 1983) and catecholamine histofluorescence (Owman et 
al., 197 1; Bohn et al., 1981); both can differentiate into neurons 
under appropriate conditions (Unsicker et al., 1978; Aloe and 
Levi-Montalcini, 1979, 1980; Doupe et al., 1985a; Stemple et 
al., 1988); and both are thought to contain large dense-cored 
vesicles (Elfvin, 1967). These two cells can, however, be distin- 
guished ultrastructurally because the progenitors are thought to 
contain very few dense-cored vesicles (Eranko, 1972, 1976; Ten- 
nyson and Mytilineou, 1976; Ross et al., 1990). All of these 
observations are consistent with a previous suggestion that the 
progenitor cells are immature chromaffin cells (Anderson, 1989). 
The lack of PNMT in the precursor cells is not a key difference 
since many mature chromaffin cells lack this enzyme as well. 

It was proposed previously that the progenitor cells would 
resemble SIF cells (Landis and Patterson, 198 1) because cul- 
tured SIF cells could serve as precursors for both chromaffin 
cells and sympathetic neurons (Doupe et al., 1985b). The SA 
antibodies, however, discriminate between the precursor cells 
and mature SIF cells, by not binding to the latter (Carnahan 
and Patterson, 1991). It is interesting, in this respect, that SIF 
cells, identified in ganglia by high TH, are the last cells to lose 
SA binding (Carnahan and Patterson, 199 1). This might suggest 
that the progenitor cells are indeed closely related to SIF cells; 
both have high levels of TH and catecholamines, both can dif- 
ferentiate into neurons, and both have large dense-cored vesi- 
cles. Prior to the availability of the SA antibodies, the only 
criterion for distinguishing chromaffin cells and SIF cells was 
the size of the vesicles; those in chromaffin cells are larger than 
thosein SIFcells(Coupland, 1965; Taxi, 1979; Taxiet al., 1983). 
These considerations suggest a novel interpretation of the Doupe 
et al. (1985b) results: perhaps the “SIF” cell that served as a 
precursor to both chromaffin cells and neurons in those exper- 
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iments was actually the SA progenitor itself, and the markers 
available at that time could not distinguish mature SIF cells and 
the progenitors. It would be of interest to return to those ex- 
periments with the SA antibodies as tools to help identify the 
various cell types. 

Another view of the SIF cell-progenitor relationship can be 
gained by considering insights from several other systems in 
which progenitors have been isolated from both developing and 
adult sources. For instance, Wolswijk and Noble (1989) found 
that there are differences between the O-2A progenitor cells 
derived from neonatal and adult rat optic nerves. The differences 
include antigenic phenotype, morphology, and cell cycle time. 
Differences have also been observed between hematopoietic stem 
cells isolated from embryonic yolk sac and adult bone marrow 
(Metcalf and Moore, 197 1). Moreover, although both satellite 
cells from adult skeletal muscle and embryonic myoblasts can 
give rise to multinucleated skeletal muscle fibers, these progen- 
itors display several differences in their phenotypes (Cossu et 
al., 1987). In the same way, then, SIF cells in neonatal and 
possibly adult ganglia could be viewed as the mature form of 
the SA progenitor, somewhat different from its embryonic coun- 
terpart but still able to generate the progeny of the lineage. 

The SA progenitor examined here may have a broader role 
in autonomic development than its name implies. The obser- 
vations that cells in the embryonic gut transiently express TH 
(de Champlain et al., 1970) and respond to NGF (Kessler et al., 
1979) and glucocorticoid in vivo (Teitelman et al., 1979; Jona- 
kait et al., 1980, 198 1) raised the possibility that enteric neurons 
could pass through a noradrenergic stage before assuming the 
cholinergic and other phenotypes characteristic of neurons in 
enteric ganglia (Cochard et al., 1978; Teitelman et al., 1978; 
Jonakait et al., 1980). This hypothesis received considerable 
support from the observations of Baetge et al. (1990) who found 
that all cells in the fetal rat bowel that express neuronal markers 
also transiently express TH and dopamine /3-hydroxylase. The 
latter catecholaminergic enzyme continues to be expressed by 
a subpopulation of these neurons into adulthood. Such findings 
suggested that enteric neurons could, in fact, be derived from 
the same progenitor cell as the SA derivatives (Landis and Pat- 
terson, 1981). Our data that the SAl and B2 antibodies also 
stain embryonic enteric neurons expressing TH and NF (Car- 
nahan et al., 1991) support this idea. Moreover, a common 
region of the neural crest (somites 5-7 in the chick, Le Douarin, 
1982) gives rise to both sympathetic and enteric ganglia. It would 
thus be of interest to determine if the SA progenitors isolated 
from embryonic sympathetic ganglia or adrenal glands could be 
influenced to differentiate properties characteristic of enteric 
neurons. At present, however, the only feature that distinguishes 
sympathetic neurons from enteric neurons is the lack of NGF 
dependence in the latter population. Many transmitters and 
neuropeptides found in the gut can also be expressed by sym- 
pathetic neurons (Patterson, 1990). 

Our present understanding of the SA lineage is summarized 
in Figure 6. The markers used to distinguish the various stages 
cell types are SAl-5, TH, B2, PNMT, and N [N refers to results 
with both NF and the neuron-specific protein SCGlO (Stein et 
al., 1988; Henion and Landis, 1990; Mori et al., 1990). The pre- 
chromaffin cell stage is identified in the adrenal gland by the 
maintenance of SA 1 expression and lack of B2 induction. These 
cells are distinguishable from El 1.5 SA progenitors by their 
reduced expression of neuronal markers (N+/-). Presympathetic 
neurons are the B2+ SAl- cells in sympathetic ganglia that ex- 

press NF and SCGlO and have lost competence to respond to 
glucocorticoid (Anderson et al., 199 1). The chromaffin and SIF 
cell phenotypes are shown as reversible because Doupe et al. 
(1985a,b) found that these cells could be converted into normal 
sympathetic neurons. Those authors also found that the chro- 
maffin/SIF phenotypic choice could be controlled by the glu- 
cocorticoid concentration, as depicted in Figure 6. The arrow 
from neural crest to the SA progenitor is not meant to imply 
that this is a single step or that all crest cells go through this 
pathway. 
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