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Spinal 5HT, Receptor-mediated Antinociception: Possible Release 
of GABA 

Abdulqader A. Alhaider,” Sizheng Z. Lei,b and George L. Wilcox 

Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455 

Although 5-HT is clearly involved in spinal analgesia, its 
mode of action remains obscure, perhaps because it has 
multiple and often opposing effects mediated by its multiple 
receptor subtypes. This investigation uses selective ago- 
nists and antagonists directed at the most recently defined 
class of 5-HT receptors (5-HT, receptors) in behavioral and 
electrophysiological studies of nociception in the spinal cord 
of rodents. The results demonstrate uniformly inhibitory ef- 
fects of a selective 5-HT, agonist on responses to noxious 
stimuli. Intrathecally administered P-methyl 5-HT produced 
dose-dependent antinociception in the tail-flick test and in- 
hibited behaviors elicited by intrathecally administered ag- 
onists for excitatory amino acid and neurokinin receptors, 
namely NMDA and substance P (SP). All 20 dorsal horn neu- 
rons we examined, which projected to the brain and re- 
sponded to both noxious stimuli and NMDA, were inhibited 
in a current-related manner by this 5-HT, agonist applied 
iontophoretically. Both the behavioral and electrophysiolog- 
ical effects were blocked not only by the 5-HT, antagonists 
zacopride and ICS 205-930, but also by antagonists to the 
inhibitory amino acid GABA. Therefore, 5-HT via an action 
at 5-HT, receptors may evoke release of GABA, which may 
in turn inhibit nociceptive transmission at a site postsynaptic 
to terminals of primary afferent fibers. If the descending 
serotonergic analgesic system in humans operates similarly, 
understanding it may enable the development of new non- 
opioid, nonaddictive analgesics. 

The involvement of 5-HT in pain processing is both profound 
and perplexing. There exists both theoretical (Basbaum and 
Fields, 1978; Fields and Basbaum, 1978) and clinical (Tollinson 
and Kriegel, 1988) evidence that, in the CNS, 5-HT inhibits 
spinal pain transmission. In the PNS, however, 5-HT appears 
to promote pain in migraine attacks (Fozard and Gray, 1989; 
Loisy et al., 1985) and in laboratory studies of human skin 
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(Richardson and Engel, 1986). Even studies restricted to the 
CNS show that spinally administered 5-HT can either inhibit 
(Wang, 1977; Jordan et al., 1978; Yaksh and Wilson, 1979; 
Davies and Roberts, 198 1; Hylden and Wilcox, 1983; Schmauss 
et al., 1983) or stimulate (Jordan et al., 1979; Fasmer et al., 
1983; Hylden and Wilcox, 1983; Clatworthy et al., 1988; Vaught 
and Scott, 1988) nociceptive responses, depending on the dose 
and species tested. On the other hand, stimulation of raphe 
nuclei releases 5-HT in spinal cord dorsal horn (Yaksh and Tyce, 
1979) and elicits inhibition of spinothalamic tract and other 
neurons (Belcher et al., 1978; Griersmith et al., 198 1; Johnston 
and Davies, 198 1) apparently by postsynaptic inhibition ofthese 
projection neurons (Giesler et al., 198 1). Most traditional 5-HT 
antagonists have failed to block these descending inhibitory 
actions consistently or completely (Yezierski et al., 1982). The 
existence of multiple receptors for 5-HT and the lack, until 
recently, of highly selective ligands for the appropriate receptors 
may have contributed to these contradictory findings. 

In the last decade, at least three distinct 5-HT receptor sub- 
types have been identified. These subtypes are termed 5-HT,, 
5-HT,, and 5-HT, receptors, with 5-HT, receptors further dif- 
ferentiated into A, B, C, and D subtypes (Pedigo et al., 198 1; 
Bradleyet al., 1986; Peroutka, 1986, 1988; Fozard, 1987). Stud- 
ies with selective 5-HT, and 5-HT, ligands have done little to 
clarify the role of these subtypes in nociception since both pro- 
and antinociceptive effects can be produced by spinal admin- 
istration ofagonists for either receptor subtype. 5-HT, receptors, 
probably of the B subtype, inhibit nociceptive neurons (El-Yas- 
sir et al., 1988), but 5-HT,, receptor agonists promote nocicep- 
tion (Zemlan et al., 1983; Murphy and Zemlan, 1987; Alhaider 
et al., 1990). Similarly, spinal 5-HT,, and/or 5-HT, receptors 
mediate both pronociceptive (Wilcox and Alhaider, 1990) and 
antinociceptive effects (Solomon and Gebhart, 1988). 

The involvement of 5-HT, receptors in nociceptive processing 
has only recently been studied (Glaum et al., 1989,199O). Unlike 
5-HT, and 5-HT, receptors, which are coupled to G-proteins 
(Julius et al., 1988, 1990; Raymond et al., 1989), 5-HT, recep- 
tors are ligand-gated cation channels (Derkach et al., 1989) and 
therefore should mediate neuronal excitation. 5-HT, receptors, 
thought to be located on the subcutaneous terminals of primary 
afferent sensory fibers, may mediate 5-HT-elicited pain in hu- 
man dermis (Richardson and Engel, 1986). Recent autoradio- 
graphical experiments indicate that there is a dense band of 
5-HT, receptors in superficial dorsal horn where small-diameter 
primary afferent fibers terminate; the number of binding sites 
is greatly reduced by neonatal capsaicin treatment (Hamon et 
al., 1989) or dorsal rhizotomy @Porte et al., 199 l), suggesting 
that many are located on primary afferent fibers. However, the 
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binding sites remaining after rhizotomy may be located on in- 
trinsic CNS neurons in the dorsal horn; 5-HT, binding sites 
have been found on intrinsic neurons in other parts of the 
CNS (Kilpatrick et al., 1987). Glaum et al. (1989, 1990) recently 
reported that in rats 5-HT-induced antinociception in the tail- 
flick test is mediated by 5-HT, receptors. Our own behavioral 
studies are consistent with the involvement of 5-HT, receptors 
in spinal antinociception and suggest that they are located on 
intrinsic CNS neurons (Wilcox and Alhaider, 1990). We ob- 
served that 2-methyl5-HT (a selective 5-HT, agonist) effectively 
blocks scratching and biting behavior induced in mice by in- 
trathecally administered substance P (SP) and NMDA, excitants 
that likely interact with intrinsic spinal neurons (Wilcox, 1988, 
1991; Aanonsen et al., 1990). 

To test the hypothesis that 5-HT, agonists activate intrinsic 
spinal cord neurons, it was first necessary to identify an inhib- 
itory mediator for the antinociceptive effect. A previous study 
has shown that activation of descending serotonergic systems 
results in postsynaptic inhibition of spinal projection neurons 
(Giesler et al., 1981). In that study, electrical stimulation of 
nucleus raphe magnus (NRM), a medullary nucleus containing 
large populations of serotonergic cells and raphe-spinal projec- 
tion neurons, elicited IPSPs in primate spinothalamic tract cells. 
That these IPSPs were reversed by hyperpolarization or intra- 
cellular chloride application (Giesler et al., 198 1) suggests that 
either GABA or glycine is involved in this descending inhibitory 
action. In addition, GABA, agonists inhibit excitatory amino 
acid (EAA)-elicited behavior (Aanonsen and Wilcox, 1989). 
Furthermore, the GABA, agonist muscimol inhibits EAA-elic- 
ited firing of nociceptive spinal projection neurons, and this 
effect is similar to that of 2-methyl 5-HT (S. Z. Lei and G. L. 
Wilcox, unpublished observations). To determine whether the 
effects of 2-methyl 5-HT were mediated through GABA, we 
challenged the inhibitory effect of 2-methyl 5-HT by coadmin- 
istering GABA antagonists. 

In this report, we present both behavioral (in mice) and elec- 
trophysiological (in rats) evidence that 5-HT, receptors on in- 
trinsic spinal cord neurons inhibit nociceptive spinal transmis- 
sion. The electrophysiological studies of sensory projection 
neurons in the spinal cord of anesthetized, paralyzed rats were 
designed to extend the behavioral results and to rule out the 
possibility that the behavioral effects involve motor rather than 
sensory systems. Experiments with GABA, antagonists further 
suggest that 5-HT, receptor activation affects nociception by 
increasing the release of GABA. Such a mode of action repre- 
sents a new concept for serotonergic antinociception; if this 
system is operative in humans, understanding it may enable the 
development of nonaddictive analgesics that manipulate this 
nonopioid analgesic system. 

Materials and Methods 
Subjects and supplies. Subjects for the behavioral studies were 17-27- 
gm male Swiss-Webster-derived mice (Harlan Sprague+Dawley, Mad- 
ison, WI) maintained in cages of no more than 10 mice per cage with 
free access to food and water in the University of Minnesota Research 
Animal Resources facilities for at least 24 hr before experimentation. 
Mice were used only once and were killed by exposure to CO,. Intrathe- 
cal injections in mice were carried out as previously reported (Hylden 
and Wilcox, 1980). Subjects for the electrophysiological experiments 
were male Sprague-Dawley rats (375-500 gm) from the same supplier 
maintained in the same facility with no more than two rats per cage. 
Rats were used only once and were killed by overdose of pentobarbital 
or urethane (i.v.). 

Substance P, N-methyl-n-aspartic acid (NMDA), 5aminovaleric acid 
hydrochloride (5-AVA), muscimol, picrotoxin, and (-)-bicuculline 
methiodide were purchased from Sigma Chemical Company (St. Louis, 
MO). 2-Methyl serotonin, (RS)-cr-amino-3-hydroxy-5-methyl-4-isox- 
azolepropionic acid HBr (AMPA), 3-tropanylindole-3-carboxylate (ICS 
205-930), and phaclofen were purchased from Research Biochemical 
Inc. (Natick, MA). Zacopride and naloxone hydrochloride were kindly 
donated by A. H. Robins Co. (Richmond, VA) and Du Pont Pharma- 
ceuticals (Wilmington, DE), respectively. 

Behavior. We first examined the antinociceptive effect of the selective 
5-HT, agonist 2-methyl serotonin in mice using the radiant-heat tail- 
flick test @‘Amour and Smith, 194 1). The maximum allowable latency 
(cutoff) was set at 5 set; this was approximately three standard deviations 
above the control mean (2.4 set) for several initial groups of mice.This 
cutoff latency also served as a determinant of percent maximum possible 
antinociceptive effect (% MPE), which was calculated in the usual way 
as posttreatment latency minus control latency divided by cutoff minus 
control. Posttreatment latency was determined 5 min after intrathecal 
injection of the agonist (2-methyl serotonin) and antagonists (zacopride 
or ICS 205-930) or saline. 

The tail-flick test does not allow differentiation between effects me- 
diated by receptors located presynaptically on primary afferent fibers 
(i.e., presynaptic) and effects mediated by receptors located on intrinsic 
neurons in the spinal cord (i.e., postsynaptic). To examine the latter 
possibility, we used stimuli that purportedly act postsynaptically on 
spinal cord neurons (Wilcox, 199 1). These stimuli include intrathecal 
injection of agonists that mimic the putative excitatory neurotransmit- 
ters glutamate and SP. Intrathecally administered NMDA (Aanonsen 
and Wilcox. 1987) and SP (Cridland and Hemv. 1986) elicit hvueraleesia 
and behavior similar to that observed after exposure to noxiouschemical 
stimuli (Hylden and Wilcox, 198 1; Hwang and Wilcox, 1986). Although 
this is a convenient and informative test, the relevance of the biting and 
scratching behavior elicited by intrathecally applied SP to nociception 
has been challenged (Frenk et al., 1988). On the other hand, the ability 
of most spinally active antinociceptive agents to inhibit this behavior 
(Wilcox, 1988) supports the utility of the test as an adjunct to thermal 
tests in studies of spinal antinociception. Behaviors elicited by NMDA 
(biting; see Fig. 2A) and SP (biting and scratching; see Fig. 2B) were 
counted for 1 min following intrathecal administration. 2-Methyl se- 
rotonin was coadministered intrathecally with either excitant, and an- 
tagonists were given intrathecally as a pretreatment 5 min before. Both 
zacopride and ICS 205-930 were effective antagonists to 2-methyl se- 
rotonin, but we studied zacopride in most experiments because of its 
higher water solubility. 

Statistics. Analysis of variance (ANOVA) with Dunnett’s post hoc 
test was used to analyze the behavioral data and to test the difference 
between doses and antagonists. Tests of statistical significance with p 
< 0.01 were considered significant. 

Electrophysiology. Extracellular recordings were conducted in spinal 
cord of male SpragusDawley rats anesthetized with urethane (1.2gm/ 
kg, i.p.), paralyzed with gallamine (27 mg/kg, i.v.), and artificially ven- 
tilated. Adequacy of anesthesia was established by continuous moni- 
toring of heart rate and pupil diameter, and supplementary anesthesia 
(urethane, 50 mg/ml in 0.2~3.3 ml saline, i.v.) was given when necessary. 
Temperature was maintained at 37 + 0.5”C with a hot-water heating 
pad beneath the rat. End-tidal CO, was monitored with a capnometer 
(model 2200, International Medical Inc., Bumsville, MN) and main- 
tained between 3.5% and 4.5% throughout the experiment by small 
adjustments in the rate (58-65 breathslmin) and volume (1.8-2.2 ml) 
of respiration. Laminectomies exposed both the lumbar (for recording) 
and the cervical (for antidromic activation of lumbar neurons projecting 
rostrally) enlargements of the spinal cord. The head and vertebral col- 
umn of the animal were mounted on a rigid frame in a Faraday cage. 
Tungsten microelectrodes (1 MR) glued to 7-barreled borosilicate-glass 
microelectrodes were used to record from single spinal neurons and to 
apply drugs iontophoretically. An analog window discriminator was 
used to detect action potentials that were at least two times larger than 
noise or spikes from other neurons. Antidromic activation was used at 
least once every 5 min and during most epochs of inhibition of ortho- 
dromic activity to verify constant spike shape and amplitude. 

The cells were located at indicated depths between 100 and 700 pm 
from the dorsal surface, and histological verification of cell location in 
dorsal horn was possible in seven cases. Once a projection neuron was 
located by antidromic activation from the cervical spinal cord, the neu- 
ron’s cutaneous receptive field was characterized by mechanical stim- 
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ulation (brush, pressure, pinch, and squeeze). Cells were classified as 
follows: (1) low-threshold (LT) cells responded best to either brush or 
pressure; (2) wide-dynamic-range (WDR) cells responded in a graded 
manner to brush, pressure, pinch, and squeeze; (3) high-threshold (HT) 
cells responded best to either pinch or squeeze, with little or no response 
to brush or pressure. WDR and HT neurons are termed nociceptive. 

Action potentials of the neurons evoked by iontophoretic application 
of excitatory and inhibitory agents and by natural stimulation of the 
cutaneous receptive field were collected and stored as peristimulus-time 
histograms ( 1 -set binwidth) of firing rate using a microcomputer (Aa- 
nonsen et al., 1990). The following drugs were used: NMDA (NMDA 
receptor agonist); AMPA [AMPA receptor (or quisqualate-gated cation 
channel) agonist]; 2-methyl serotonin (5-HT, receptor agonist); zaco- 
pride (5-HT, antagonist); muscimol and bicuculline (GABA, agonist 
and antagonist, respectively). Older nomenclature refers to the AMPA 
receptor as the quisqualate receptor, but possible confusion with the 
G-protein-coupled quisqualate receptor mandates this new nomencla- 
ture (Watkins et al., 1990). Drugs (5-20 mM) were dissolved in NaCl 
solution. Sufficient NaCl was added so that the total ionic strength of 
the solution was 200 mM. NMDA and AMPA solutions were adjusted 
to pH 8.0, retained with positive current (a2 nA), and ejected with 
negative current (2-l 20 nA); 2-methyl serotonin, zacopride, bicuculline, 
and muscimol solutions were adjusted to pH 4, retained with negative 
current (4-10 nA), and ejected with positive current (5-60 nA). NMDA 
and AMPA were applied regularly and repeatedly in brief pulses. 2- 
Methyl serotonin, muscimol, bicuculline, and zacopride were ejected 
with various currents superimposed on repeated NMDA or AMPA 
pulses. 

Our determination of inhibition of firing is based on a reduction of 
total spikes elicited per excitant epoch (i.e., area under the curve). Stable 
baseline response rates to NMDA or AMPA were obtained (variability, 
~20%) before other drugs were applied. Inhibition is reported for re- 
ductions of the area under the curve of 40% or more. We felt justified 
in selecting this artificial cutoff value instead of applying a statistical 
test for three reasons: (1) examination of several hundred epochs of unit 
activity indicated that responses of a stable preparation never decreased 
this much spontaneously, (2) our use of area under the curve instead of 
peak firing rate is itself a statistical summary that takes account of some 
natural variability, and (3) the validity of most standard statistical tests, 
such as ANOVA or t tests that we might have used, relies on sample 
independence that is not clearly met by successive recordings from a 
single neuron. We defined complete blockade of an inhibitory effect as 
a return of responses to 100% of control levels, and partial blockade as 
a return of responses to 80% of control levels. 

Results 
Behavior 
Figure 1 shows that 2-methyl 5-HT (6.5-65 nmol/mouse in 
saline), in a dose-dependent manner (F,,40 = 15.5; p < 0.001; 

ANOVA), prolonged tail-flick latency. Zacopride (0.3-6.3 nmol/ 
mouse, i.t. in saline; data shown in Fig. 1A for 3 nmol: F,,40 = 
182; p < 0.001; ANOVA) and ICS 205-930 (0.3, 1.1, and 3.5 
nmol/mouse, i.t.; data not shown) effectively antagonized 
2-methyl 5-HT-induced antinociception. These results in mice 
confirm those obtained by others in rats (Glaum et al., 1989, 
1990). The antinociceptive effect of 2-methyl 5-HT was also 
blocked or reduced by the GABA antagonists (Fig. 1B) bicu- 
culline and picrotoxin (GABA, antagonists) and phaclofen (GA- 
BA, antagonist). At doses that had no effect by themselves, 
bicuculline (0.02 nmol/mouse, i.t.) or picrotoxin (0.04 nmol/ 
mouse, i.t.) completely blocked the antinociceptive effect of 
2-methyl 5-HT, while phaclofen (4 nmol/mouse, i.t.) only par- 
tially blocked it. These antagonist effects were significant overall 
(F3,27 = 34.9; p < 0.00 1; ANOVA) as well as by individual group 
post hoc tests. Naloxone (0.3 nmol/mouse, a dose that antag- 
onizes a 90% MPE morphine dose of 1 pg, i.t.) did not block 
the antinociceptive effect of 2-methyl 5-HT. 

2-Methyl 5-HT (0.3-3.3 nmol/mouse) inhibited the biting 
and scratching behavior induced by both NMDA (0.25 nmol, 
i.t.) and SP (10 pmol, i.t.) in a dose-dependent manner (Fig. 2). 
Whereas the NMDA-elicited behavior was completely blocked 
by 2-methyl5-HT(F,,,, = 82.0; p < 0.00 l), SP-elicited behavior 
was reduced by only 65% (F,,,, = 45.7; p < 0.001). Zacopride 
(0.3-l .O nmol/mouse) blocked the actions of 2-methyl5-HT on 
both SP- (F4,28 = 36.0; p < 0.001) and NMDA-induced (F3,28 = 
79.2; p < 0.001) behaviors (Fig. 2A,B, insets). Zacopride by 
itself, at doses below 10 nmol, produced no overt behavioral 
effects, but at doses over 10 nmol, it induced behavior similar 
to that induced by NMDA, this result suggests that the effect of 
some tonic 5-HT release was being removed. In the case of 
NMDA-induced behavior, the effect of 2-methyl5-HT was also 
blocked by bicuculline (Fig. 2,4, inset; 6-39 pmol/mouse, i.t.; 
F 3.28 = 36.4; p < 0.001) but not by phaclofen (4 nmol/mouse, 
i.t.) or 5-AVA (0.1 nmol/mouse, i.t.; GABA, antagonists; data 
not shown).On the other hand, inhibition of SP-induced be- 
havior by 2-methyl 5-HT was blocked by phaclofen (Fig. 2B, 
inset; 0.12-4 nmol/mouse, i.t.; F,,,, = 58.4; p < 0.001) and 
5-AVA (0.1 nmol/mouse, i.t.; data not shown) but not by bi- 
cuculline (39 pmol/mouse, i.t.; data not shown). In the absence 
of 2-methyl5-HT, these doses of antagonists were without effect. 
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Twenty-two spinal cord projection neurons (LT. 2; WDR. 12; 
HT. 8) were identified in I2 rats. This study was conducted as 
part of a larger study of I I I spinal projection neurons (Lei and 
Wilcox, unpublished observations); the responses to natural 
stimulation, NMDA, and AMPA reported here are typical of 
the responses to be reported in that larger study. The responses 
are also consistent with those reported in a previous study from 
this laboratory; that study showed that nociceptive neurons con- 
sistently respond to iontophoretically applied NMDA (Aa- 
nonsen et al., 1990). All 22 neurons examined in the present 
study responded to either NMDA or AMPA. 20 were nocicep- 
tive. and I2 responded to both agents. The responses to NMDA 
and AMPA had short onset latency (< 5 set) and duration (< 5 
set after termination). All neurons also responded to cutaneous 
stimulation of the ipsilateral hindpaw and to antidromic acti- 
vation from lateral upper cervical white matter. 

2-Methyl S-HT inhibited in a current-related manner NMDA- 
induced excitation in all 20 neurons excited by NMDA (Fig. 3). 
The inhibitory effect of 2-methyl 5-HT was blocked by zaco- 
pride in all six cells tested (Fig. 3A); zacopride alone usually 
increased NMDA-elicited firing as shown in Figure 3A. which 
is consistent with the behavioral data and suggests the presence 
of tonic serotonergic activity in these rats. 2-Methyl 5-HT in- 
hibited AMPA-induced excitation less frequently (9 of 14; Fig. 
4B) than NMDA-induced excitation (20 of 20; Fig. 4A). An 
example of one neuron excited by both excitants is shown in 
Figure 4, .4 and B. In 5 of6 neurons where the two EAA agonists 
were compared for susceptibility to 2-methyl 5-HT. NMDA- 
elicited firing was more sensitive to inhibition by 2-methyl5-HT 
than that ofAMPA [data, expressed as (% inhibition ofNMDA)/ 
(96 inhibition of AMPA), for the five neurons for which NMDA 
activation was more susceptible: 75/26, 77/59. 86149, 84/68, 
and 40130; for the sixth neuron, 571901. Muscimol similarly 

01 1 1 

Dose 2-me-5HT (nmollmouse, i.t.) 
10 

inhibited all EAA-induced excitation (5 of5 for NMDA-induced 
excitation; Fig. 4C; 3 of 3 for AMPA-induced excitation; data 
not shown). In all six neurons tested, bicuculline reduced the 
inhibitory effect of 2-methyl 5-HT on NMDA-elicited excita- 
tion. in four completely and two partially (Fig. 40). In summary, 
nociceptive projection neurons were always inhibited (never 
excited) by 2-methyl 5-HT, and these inhibitory effects were 
blocked by either GABA, or 5-HT, antagonists. 

Discussion 
To our knowledge, these results represent the first combined 
behavioral and electrophysiological examination of the role of 
the 5-HT, receptor subtype in 5-HT’s spinal antinociceptive 
action. We confirmed earlier studies showing that activation of 
5-HT, receptors produces thermal antinociception and extended 
these results to encompass other behavioral tests in another 
species and electrophysiological measures of sensory neural ac- 
tivity. Our finding of serotonergic inhibition of EAA-induced 
firing (EAAs are generally thought to act postsynaptically) to- 
gether with the recordings of IPSPs after activation ofa putative 
serotonergic pathway (Giesler et al., 198 I) suggests a postsyn- 
aptic site of action in the spinal cord dorsal horn. That this 
action could be prevented by GABA,, GABA,, or 5-HT, an- 
tagonists indicates the participation of these receptor subtypes 
in production of this antinociception. Consistency between be- 
havioral and electrophysiological studies diminishes the pos- 
sibility that drug-induced motor effects are responsible for our 
behavioral observations. The results of the current study are 
consistent with the idea that 2-methyl5-HT releases GABA and 
are in agreement with the differential involvement ofthe GABA 
receptor subtypes in two behavioral tests. 

Because 5-HT, receptors are ligand-gated cation channels, it 
is unlikely that they exert a direct inhibitory action in the CNS. 
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Therefore, the inhibition we observed following activation of 
these receptors is probably due to excitation of an inhibitory 
neuron. Our finding that GABA antagonists block the action of 
SHT, agonists in the spinal cord suggests that endogenously 
released 5-HT in the cord excites a neuron, which then releases 
GABA. We have diagrammed schematically how activation of 
SHT-containing descending tracts might release spinal GABA 
and how this GABA might inhibit nociceptive projection neu- 
rons in Figure 5; this tentative diagram, though not directly 
supported by the data, could account for both the behavioral 
and electrophysiological observations reported here. GABAer- 
gic interneurons in substantia gelatinosa (Hayes and Carlton, 
1990) may be too small to be sampled by our relatively large 
recording electrode array. Indeed, a previous study using elec- 
trodes optimized to record from smaller interneurons found that 
5-HT excited a preponderance of neurons in substantia gelati- 
nosa (Todd and Millar, 1983). Previous studies have reported 
that GABA, antagonists do not reverse inhibition of spinal 
neurons elicited by NRM stimulation (Belcher et al., 1978; Gri- 
ersmith et al., 198 1). However, use in that study of nonselective 

Figure 3. Typical effects of ionto- 
phoretically administered drugs (indi- 
cated by horizontal bars) on NMDA- 
elicited firing of spinal dorsal horn 
projection neurons are indicated in 
peristimulus-time histograms (1 set/ 
bin). The ordinate represents instanta- 
neous firing rates (spikes/set) of the 
neurons. A, 2-Methyl 5-HT (2M-5HT; 
40 nA) inhibited NMDA-elicited ex- 
citation, and this effect was reversed by 
zacopride (20 nA); zacopride alone of- 
ten increased firing slightly, and cur- 
rents were set low enough to minimize 
this effect. B, 2-Methyl SHT inhibition 
was current dependent in all neurons 
tested with multiple currents (N = 5). 
All agents were given iontophoretically. 

EAA agonists and natural stimulation may account for this neg- 
ative finding: if activation by the EAA agonists or by the syn- 
aptically released glutamate involved AMPA receptors, we would 
not expect synaptically released 5-HT to inhibit the activation 
completely. Alternatively, the NRM stimulation parameters used 
may have recruited nonserotonergic descending pathways. 

We attribute the consistency of our results to (1) our use of 
2-methyl5-HT, which selectively activates 5-HT, receptors; (2) 
our use of selective agonists for EAA receptors as excitants 
(Aanonsen et al., 1990); and (3) our selection of projection neu- 
rons. Whereas 5-HT activates all 5-HT receptor subtypes and 
produces pro- as well as antinociceptive effects in behavioral 
tests, 2-methyl5-HT activates one subtype selectively and pro- 
duces only antinociceptive effects when injected intrathecally in 
mice (Wilcox and Alhaider, 1990). Although the selectivity of 
2-methyl5-HT for 5-HT, receptors is not absolute, its selectivity 
for 5-HT, over 5-HT, receptors in some assays approaches 1000: 1 
(Richardson et al., 1985). Our failure to see any evidence of 
scratching behavior, which seems to be mediated by 5-HT, 
receptors (Wilcox and Alhaider, 1990), even at high intrathecal 



1888 Alhaider et al. . Spinal 5-HT, Receptor-mediated Antinociception and GABA 

30 ---------_ 

h: 2M-5HT 30nA 
9 
9 20 
Y 

:: 
10 

Time (set) 

0 
0 40 80 120 160 

Time (set) 

C 

s 

60 Mus 6nA 3nA - - 

iii 
2 40 

3 

20 

Time (set) 
Figure 4. A and B, For a single WDR 
neuron, 2-methyl 5-HT (2M-5HT) in- 
hibited NMDA-elicited firing (A) to a 
greater degree than AMPA-elicited fir- _ D 
mg (B); this effect was observed in most 
cases where AMPA was effective. C, 
Muscimol (Mus) also inhibited the neu- 
rons inhibited by 2-methyl 5-HT. D, 
Bicuculline (15 nA) partially blocked 
the inhibitory effect of 2-methyl 5-HT 
(30 nA) on NMDA-elicited firing on 
another cell; effective currents of bi- 
cuculline typically increased firing 
slightly as shown here. Reports of bi- 
cuculline blockade refer to reductions 
at least this large. All agents were given 
iontophoretically. Drawings at right de- 
scribe extent of excitatory receptive 
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doses of 2-methyl5-HT supports our contention that 2-methyl 
5-HT is acting selectively at 5-HT, receptors in the rodent spinal 
cord. The apparently pronociceptive action of high doses of 
zacopride (NMDA-like biting and scratching behavior) may re- 
sult from disinhibition of neurons that are under the inhibitory 
influence of tonically released 5-HT. Although we have not 
excluded the possibility that zacopride activates 5-HT, receptors 
as an agonist to produce such behavior, we think this unlikely 
because zacopride-induced behavior appeared qualitatively more 
like NMDA-elicited behavior than like behavior elicited by 
a-methyl 5-HT (a 5-HT, agonist; Wilcox and Alhaider, 1990). 

The effects of 2-methyl 5-HT in the tail-flick test were com- 
pletely blocked by zacopride and the GABA, antagonists bi- 
cuculline and picrotoxin, only partially blocked by the GABA, 

0 

antagonist phaclofen, and not blocked at all by the opioid an- 
tagonist naloxone. It appears, therefore, that tail-flick antino- 
ciception produced by 2-methyl 5-HT relies more on GABA, 
than GABA, receptors, and that opioid receptors are not in- 
volved. Bicuculline also blocked the inhibitory effect of 2-meth- 
yl 5-HT on NMDA-induced behavior (Fig. 2A, inset), whereas 
phaclofen was ineffective. In contrast, phaclofen blocked the 
inhibitory effect of 2-methyl5-HT on SP-induced behavior (Fig. 
2B, inset), while bicuculline was inactive. We have previously 
found that NMDA-induced behavior can be blocked by GABA, 
(but not GABA,) agonists (Aanonsen and Wilcox, 1989), while 
SP-induced behavior can be blocked by GABA, (but not GA- 
BA,) agonists (Hwang and Wilcox, 1989). We therefore con- 
clude from the behavioral studies with GABA antagonists that 
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Figure 5. A hypothetical neuronal arrangement that accounts for our 
experimental findings. Raphe-spinal neurons (e.g., in NRM) presum- 
ably release 5-HT in the spinal cord, and the released 5-HT activates 
5-HT, receptors on GABAergic interneurons. GABA released by these 
intemeurons acts postsynaptically to inhibit nociceptive projection neu- 
rons; in the case of NMDA-mediated activation, GABA, receptors 
appear to be most effective. Both the behavioral and the electrophysi- 
oloeical data reoorted here support the synaptic arrangement around 
the-spinal projection neuron. ‘ihe raphgspinal connection shown is 
based on the work of others (Belcher et al., 1978; Giesler et al., 198 1; 
Griersmith et al., 198 l), and the selective association between GABA, 
and SP receptors suggested by our behavioral data is not diagrammed. 

2-methyl5-HT may facilitate the release of GABA; the released 
GABA then inhibits NMDA- and SP-induced behavior at GA- 
BA, and GABA, receptors, respectively. 

The 5-HT, receptor may represent an important mediator of 
the descending serotonergic control of nociceptive transmission 
through the dorsal horn, particularly that component of afferent 
excitatory transmission mediated through NMDA receptors. 
We have found that NMDA receptors are important in noci- 
ceptive neurotransmission in the dorsal horn (Aanonsen et al., 
1990), and others have recently found that this NMDA com- 
ponent may mediate “wind-up” phenomena elicited by repeated 
stimulation (Mendell, 1966; Davies and Lodge, 1987; Thomp- 
son et al., 1990). This wind-up phenomenon may contribute to 
strong pain sensations in humans (Jorum et al., 1990). We have 
found that this component of the afferent nociceptive message 
is particularly susceptible to p-opioid agonists (Aanonsen and 

Wilcox, 1987; Lei and Wilcox, 1989); it is well accepted that 
agents in this class are the most effective and addicting analgesics 
(Jaffe, 1985). The promising results of the current experiments 
suggest that intrathecal administration of 5-HT, agonists or si- 
multaneous activation of descending serotonergic systems and 
potentiation of GABAergic neurotransmission may be useful 
alternatives to addicting opioid analgesics. Further biochemical 
studies of GABA release and functional studies of interactions 
between 5-HT, receptors and adrenergic antinociceptive sys- 
tems are warranted. 
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