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There are at least three possibilities for encoding information 
in a small area of cortex. First, neurons could have identical 
characteristics, thus conveying redundant information; sec- 
ond, neurons could give different responses to the same 
stimuli, thus conveying independent information; or third, 
neurons could cooperate with each other to encode more 
information jointly than they do separately, that is, syner- 
gistically. We recorded from 28 pairs of neurons in inferior 
temporal cortex of behaving rhesus monkeys. Each pair was 
recorded from a single microelectrode. Both the magnitude 
and the temporal modulation of the responses were quan- 
tified. We separated the responses into signal (average re- 
sponse to each stimulus) and noise (deviation of each re- 
sponse from the average). Linear regression showed that 
an average of only 18.7% of the magnitude of the signal 
carried by one neuron could be predicted from the magnitude 
of the other, and only 22.0% could be predicted by including 
the temporal modulation. For the noise, the figures were 
5.5% and 8.3%, respectively, even less than for the signal. 
Information theoretic analysis shows that the pairs of neu- 
rons we studied carried an average of 20% redundant in- 
formation. However, even this relatively small amount of re- 
dundancy places a severe upper limit on the information that 
can be transmitted by a neuronal pool. A pool of neurons for 
which each pair is mutually redundant to extent y can only 
carry a maximum of 1 ly, here five times, as much information 
as one neuron alone. Information theoretic analysis gave 
no evidence for the presence of information as a function 
of both neurons considered together, that is, synergistic 
codes. Cross-correlation showed that at least 61% of the 
neuronal pairs shared connections in some manner. Given 
these shared connections, if adjacent neurons had had iden- 
tical characteristics, then the noise on the outputs of these 
neurons would have been highly correlated, and it would not 
be possible to separate the signal and noise. The severe 
impact of correlated noise and information redundancy leads 
us to propose that the processing carried out by these neu- 
rons evolved both to provide a rich description of many stim- 
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ulus properties and simultaneously to minimize the redun- 
dancy in a local group of neurons. These two principles 
appear to be a major constraint on the organization of inferior 
temporal, and possibly all, cortex. 

[Key words: information, temporal modulation, coding, sig- 
nal, noise, vision] 

Previous studies have shown that single neurons in the visual 
system have a limited capacity to carry information (McClurkin 
et al., 199 1 b). A single neuron by itself does not have the capacity 
to explain perception or behavior, which must be a property of 
the simultaneous functioning of many neurons. The spread of 
fibers terminating in a local area suggests that adjacent neurons, 
here defined as neurons recorded from the same microelectrode, 
receive many common inputs. This organization could result 
in adjacent neurons processing data in the same or very similar 
ways, but the actual relationship of the anatomical organization 
to the messages being carried is not known. Without under- 
standing how the messages carried by adjacent cortical neurons 
are related, it is not possible to determine how information is 
processed and transmitted in the nervous system. 

The physiological relations between neurons in a local group 
have most often been studied through the use of the cross- 
correlation technique (Eggermont et al., 1983; Melssen and Ep- 
ping, 1987; Kruger and Aiple, 1988). Cross-correlation tech- 
niques use the relationship between the times of occurrence of 
individual spikes from pairs of neurons to define effective con- 
nectivities (Melssen and Epping, 1987). However, Melssen and 
Epping (1987) point out that unique anatomical patterns of 
connections cannot be determined using these techniques. In 
addition, cross-correlation techniques are not designed to ex- 
plore whether the information carried by pairs of neurons is 
related. 

Considering that adjacent neurons probably share common 
afferents, one might expect them to contain similar information 
in their responses. If they carry the same message with uncor- 
related noise, then the signal-to-noise ratio would increase with 
the square root of the number of neurons. If the number of 
neurons is relatively large, then the message would be resistant 
to the loss of one or a few neurons. However, if the noise were 
correlated, then averaging the responses of many neurons would 
not improve the signal-to-noise ratio, and the only advantage 
in having many neurons would be resistance to cell loss. 

Another possibility is that neurons could perform quite dif- 
ferent operations on the messages coming in from their afferents. 
Then adjacent neurons could carry messages that were inde- 
pendent or nearly so. Each message would have a relatively low 
signal-to-noise ratio, but the total amount of information would 
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be equal to the sum of that carried by the individual neurons. 
This scheme would preserve a complete description of many 
aspects of a stimulus in a relatively small volume of cortex. In 
addition, the noise would be uncorrelated even if the neurons 
shared all inputs. 

Finally, it is possible that neurons could carry messages that 
are present only in their responses considered jointly, that is, 
synergistically. For example, the difference between the re- 
sponses of a pair of neurons might be very precise. In this case 
it would not be possible to interpret fully the response of a single 
neuron without knowing the responses of the neighboring neu- 
rons as well. 

These different encoding schemes imply different roles for 
adjacent neurons, and for the nature of information processing 
in the nervous system. To determine which, if any, of these 
encoding schemes is used by neuronal groups in inferior tem- 
poral (IT) cortex, we studied visually elicited responses of pairs 
of neurons recorded from a single microelectrode. Correlating 
the responses of pairs of neurons would confound the effects of 
signal and noise. Therefore, we separated the neuronal responses 
into a signal component (average response to each stimulus) and 
a noise component (difference from the average response). This 
allows the signal and noise to be dealt with separately. 

Information is always calculated from a specific stimulus set. 
For the results of any experiment to be interpreted as generic, 
it is important to use a rich and varied stimulus set. With only 
a few stimuli, we would not have been able to determine whether 
two neurons generally transmitted the same message (i.e., carry 
redundant information) or not (i.e., carry independent infor- 
mation). For example, if we had used only two stimuli, the 
responses of any pair of adjacent neurons would have been 
perfectly correlated, because two points can always be connected 
with a straight line, and thus the results would have been biased. 
Therefore, we used 32 orthogonal stimuli based on the Walsh 
transform (Ahmed and Rao, 1975; Harmuth, 1977; Richmond 
et al., 1987). Because the firing of neurons in IT cortex depends 
upon the behavioral conditions, the stimuli were presented dur- 
ing a simple match-to-sample memory task. In this task each 
stimulus can take on three different behavioral meanings: sam- 
ple, match, and nonmatch. Thus, our full stimulus set consisted 
of 96 unique combinations. 

Using linear regression and information theory, we have shown 
that the signals carried by adjacent neurons in IT cortex are 
largely uncorrelated and independent, and that the noise is more 
uncorrelated than the signal. As we pointed out above, there is 
a great potential for correlated noise to appear in the responses 
of adjacent neurons, which would seriously interfere with effi- 
cient information processing. The need to avoid the conse- 
quences of correlated noise and redundancy of information pro- 
vides strong pressure favoring selection of connection weights 
that keep the responses of adjacent neurons nearly independent 
both for signal and noise. 

Some of these data have appeared in an abstract (Gawne and 
Richmond, 1990). 

Materials and Methods 

Under surgical anesthesia, using standard sterile surgical techniques, 
two rhesus monkeys (Muccuca mulatta) were prepared for chronic sin- 
gle-unit recording, with a stainless-steel cylinder implanted on the top 
of the head in the stereotaxic plane (AP + 15, L 2 1) to allow penetration 
to the IT cortex (Richmond et al., 1983). A coil of Teflon-coated stain- 
less-steel wire was implanted under Tenon’s capsule of one eye, which 
allowed eye position to be continuously and accurately monitored via 
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Figure 1. Stimulus set: the low-resolution 4 x 4 set of Walsh patterns 
used as visual stimuli. Both this and the opposite contrasts were used, 
for a total of 32 patterns. Each stimulus was 2.3” square, and all stimuli 
were centered at the point of fixation. 

the magnetic field/search coil technique (Robinson, 1963; Judge et al., 
1980). These monkeys were trained to perform a variation of a standard 
fixation task, in which the fixation target was turned off when the stim- 
ulus was presented, thus avoiding any interference between the stimulus 
and the fixation point (Wurtz, 1969; Richmond et al., 1983). 

Experimental paradigm. The stimulus set consisted of 16 Walsh pat- 
terns and the 16 contrast-reversed ones for a total of 32 visual stimuli 
(Fig. 1) (Ahmed and Rao, 1975; Richmond et al., 1987). These stimuli 
were used in a nonmatch-to-sample task (Fig. 2) (Eskandar et al., 1992). 
The monkeys initiated trials by grasping a metal bar and fixating a small 
black spot subtending 0.15”. After 350 msec, the fixation point disap- 
peared and a pattern, the sample, subtending 2.5”, appeared in the center 
of the visual field for 352 msec. Following the sample pattern there was 
a delay period of 550 msec, during which the fixation point reappeared. 
After the delay period, the fixation point was turned off again, and a 
test pattern appeared for 352 msec. If the test stimulus was different 
from the sample stimulus, that is, a nonmatch, the monkey was required 
to release the bar within 550 msec after its disappearance to obtain a 
liquid reward. If the test stimulus was the same as the sample stimulus, 
that is, a match, the monkey was required to continue holding the bar 
for 550 msec until a third nonmatching stimulus appeared. In this case 
the monkey was required to release the bar during the presentation of 
this third stimulus to obtain its reward. The monkey was required to 
maintain fixation within 1 .O” of the fixation point throughout the du- 
ration of a trial; otherwise the trial was aborted. At the completion of 
a trial there was an interval of at least 750 msec before the next sample 
stimulus appeared. The type of trial, match or nonmatch, was chosen 
randomly, as was the pairing of nonmatch with sample stimuli. This 
ensured that the monkey could not anticipate the type of trial and that 
there were nearly equal numbers of trials for each stimulus in each 
context. The monkeys were trained until they performed correctly at 
least 85% of the time. 

The stimuli are specified by two factors, visual pattern and behavioral 
condition. The visual patterns were the 32 Walsh patterns, and the 
behavioral conditions consisted of sample, match, and nonmatch. Most 
of the time we shall regard each combination of pattern and condition 
as constituting a unique stimulus, but at times we shall examine one 
factor regardless of the value of the other factor, for example, the effect 
of Walsh pattern 1 regardless of the condition, or the effect of the match 
regardless of the visual pattern. This will always be explicitly noted. 

Multiunit separation. To separate units in the multiunit recordings, 
we exploited the fact that spikes from different cells generally have 
different shapes. To do this we used a modification of a technique first 
developed by Abeles and Goldstein (1977). In this technique, a set of 
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Figure 2. Schematic diagram of the nonmatch-to-sample task. In this 
task, a sample picture is followed by a test picture. If the second picture 
does not match the first, the monkey must release a bar to be rewarded. 
If the second picture matches the first, then the monkey must wait for 
the appearance of a third nonmatching picture and then release the bar 
in order to be rewarded. 

waveforms known as the principal components are first calculated from 
the waveforms of a set of spikes recorded from all of the neurons. The 
principal components form a basis for the decomposition of the spike 
waveforms, giving a set of coefficients for each waveform (Ahmed and 
Rao, 1975). This is analogous to the Fourier transform, where a signal 
is broken down into a series of sine waves, and can then be completely 
characterized by the coefficients for the different sine waves. However, 
unlike Fourier analysis, the shape of the principal components is not 
fixed in advance, but is a function of the data themselves. The coeffi- 
cients of the first principal component account for the greatest variance 
possible with a linear measure. The coefficients of each succeeding prin- 
cipal component account for the maximum variance possible for the 
residual, with the restriction that it is orthogonal to the others. The 
coefficients of one principal component are uncorrelated with the coef- 
ficients of any other principal component. Thus, the principal compo- 
nents provide a very efficient representation of the data. For our needs 
in spike separation, the critical property is that the coefficients of the 
first two principal components of the spikes account for the largest 
amount of the variance possible with two waveforms. Two principal 
components were used because a two-dimensional plot can be easily 
and rapidly displayed on a computer screen. 

In implementing the Abeles and Goldstein technique, the signal from 
the microelectrode was filtered to pass frequencies only between 500 
Hz and 10 kHz, and was then sampled by a digital signal processing 
system (Communications, Automation, and Control DSP32C with DBCS 
5339 Analog to Digital converter, Allentown, PA). This system connects 
to an IBM-PC compatible computer, which handled the display and 
user interface. The sampling rate of the A/D converter was set at 20,000 
samples per second. Spikes were detected by a simple voltage threshold, 
and 20 data points were used for each individual spike. When stable 
neurons appeared on the oscilloscope display, the data from 100 spikes 
were collected, and then the principal components were calculated from 
these data. The first two principal components were loaded into the 
digital signal processing system. Thereafter, whenever a spike was de- 
tected it was plotted as a single point with the coefficient of the first 
principal component on the vertical axis and the coefficient of the second 
principal component on the horizontal axis. 

The points from different neurons fell into different clusters, and 
clusters could be manually selected by drawing a box around the points. 
By associating different clusters with different neuronal spikes, the sig- 
nals from different neurons were identified. The position ofthe electrode 
was adjusted to optimize the separation of multiple units, and only well- 
isolated clusters were used. Overlapping spikes cannot be detected with 
this technique. However, the system reset immediately after the am- 
plitude on a spike went below threshold, so the time during which the 

system did not respond (the dead time) was approximately equal to the 
time that the spike waveform was above threshold, less than 1 msec. 
The time of spike occurrence was recorded to the nearest millisecond 
by our laboratory computer. 

Response quantification. To quantify a neuron’s response, we first 
convolved the spike train with a Gaussian kernel, c = 20 msec. The 
resulting spike density function provides a low-pass-filtered estimate of 
the probability of spike occurrence over time, 3 dB cutoff 7 Hz (Ahmed 
and Rao, 1975; Silverman, 1986; Richmond et al., 1987). Changing the 
c changes the trade-off between resolution in time and resolution in 
amplitude. A larger (T loses the ability to resolve rapidly changing events 
but, with averaging over a larger time, is better able to resolve the 
absolute levels of a signal. We tried several different values of u ranging 
from 5 to 20 msec on data from each of several neurons, and found 
that over this range there were no significant differences among any of 
our analytic measures. 

Our analysis was restricted to an interval of 256 msec duration starting 
90 msec after the stimulus onset. The end of this interval coincided 
with the stimulus being turned off. The spike densities were sampled 
every 4 msec over a 256-msec-long window, giving a 64-dimensional 
vector representation of the response. These vectors were decomposed 
into the principal components, which incorporate both the magnitude 
and temporal pattern of the responses (Richmond and Optican, 1987). 
The principal components were calculated from the spike densities of 
all of the individual responses to all of the stimuli. The principal com- 
ponents were calculated for each neuron independently. We will refer 
to the first principal component as &,, the second as &, and so on. 
Details of the principal component method are given in the previous 
section. 

We represented the data in this experiment with the coefficients of 
the first five principal components, which together accounted for 93.3 
? 0.2% of the variance of the data from all of our cells. We restricted 
ourselves to the first few principal components because they account 
for most of the variance of the response, and because it is currently not 
possible to perform our analyses on more than a few principal com- 
ponents. In addition, previous work has shown that only the first few 
principal components carry significant amounts of information in the 
response of a single cell in IT cortex (Optican and Richmond, 1987). 
As seen before, the coefficient of the first principal component was 
always highly correlated with the number of spikes in the response 
(Richmond and Optican, 1987; Richmond et al., 1990; McClurkin et 
al., 1991a). 

Throughout this paper we will be using linear regression, both uni- 
variate (i.e., involving one independent variable) and multivariate (i.e., 
involving several independent variables). We will report the multiple 
RZ values from the regression because RZ shows how much of the vari- 
ance in the data is accounted for by the regression model. For the 
univariate case, this is equivalent to the square of the correlation coef- 
ficient (Draper and Smith, 1980). Although R2 does not indicate whether 
the correlation is positive or negative, for the purposes of this study the 
sign of the correlation was not a central issue. 

The mean R2 for the correlation of the coefficients of the first principal 
component versus the spike count for all 56 cells was 0.88 f 0.013. 
The multiple R2 gives the variance accounted for by the linear regression; 
therefore, 88% of the variance of the spike count can be determined by 
knowing the value of the coefficient of the first principal component. 
The principal components are orthogonal, and the coefficients of any 
one principal component are uncorrelated with the coefficients of any 
other. The first five principal components account for the magnitude 
and most of the temporal pattern of a neuron’s responses. 

Ifthe data had been analyzed in the time domain, the responses would 
have had one dimension for each millisecond of the response, in this 
case 256 msec. An impractically large number of trials would have been 
required to analyze data of such high dimensionahty directly. Reducing 
the dimensionality of the representation reduces the number of trials 
required to achieve a given level of power to a practical level. We used 
the principal components because of their orthogonality and efficiency 
in accounting for the variance in the data. 

ANOVA. To determine which aspects of the neuronal response were 
affected by the two factors, pattern and condition, a two-way analysis 
of variance (ANOVA) was applied to the coefficients of the first three 
principal components, each taken alone. We accepted p < 0.05 as sig- 
nificant. For the pattern factor, there were 32 patterns in the stimulus 
set, consisting of the 16 Walsh patterns and their contrast-reversed 
mates. For the condition factor, there were three behavioral conditions: 
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sample, match, and nonmatch. The Brown-Forsythe correction was 
used to compensate for unequal variances. 

Separation of signal and noise in neuronal responses. To estimate the 
signal in the response of a neuron to a particular stimulus condition, 
we used the average of the coefficients of the principal components of 
all of the responses in that stimulus condition. To estimate the noise, 
we subtracted the estimated signal for the class from the response to 
each individual stimulus presentation for each principal component. 
The noise was not partitioned into the different stimulus conditions, 
but was analyzed as a single set across all stimulus conditions. Thus, 
for each stimulus class the signal was represented by the coefficients of 
several average principal components, and for the noise we had a set 
of principal component coefficients for each individual response. Since 
the principal components are a linear transform, this separation ofsignal 
and noise could have been done in the time domain. However, as 
mentioned previously, an impractically large number of trials would 
have been required to perform this analysis without first reducing the 
dimensionality of the signals to a manageable level. The use of principal 
components achieves this with maximum efficiency (Ahmed and Rao, 
1975). 

Correlations of signal and noise across neurons. One straightforward 
method to’determine whether two neurons have the same response 
characteristics is to perform a linear regression of the response of one 
versus the response of the other. Although this is a useful measure, the 
results must be interpreted carefully. Consider two neurons that have 
identical response characteristics, but have nearly uncorrelated noise. 
Depending on how much noise contaminates the signal, linear regression 
could show that the responses of the neurons are nearly uncorrelated. 
However, if one took the average response for each stimulus condition 
across many repetitions, and performed the correlation on the averages, 
the correlation would be extremely high. Using the averaged principal 
component coefficients as estimates of the neuronal signals allows us to 
determine if two neurons have the same response characteristics even 
in the presence of noise. 

We calculated the linear regressions for both the average responses 
and the noise responses for the first principal component, that is, & 
from cell A correlated with &, from cell B. Because the higher principal 
components are typically noisier, the correlation of each principal com- 
ponent from one neuron with each one from the other neuron may be 
unreliable for other than the first one. In a simple case, the first principal 
component from one neuron might have corresponded with the second 
principal component from an adjacent neuron. By using canonical cor- 
relation, we were able to examine the relation of the first principal 
component from one neuron against all of the components from the 
second neuron at once (Morrison, 1967). In this way, we could identify 
whether the amount of variance accounted for was higher when several 
principal components were considered together. 

The accuracy of an estimate is a function of the number of samples. 
To study the effects of sample size on our results, we performed two 
controls. First we took the data from a single neuron, resampled the 
data with replacement to create two new data sets, and calculated the 
correlation between these two data sets. Any deviation from a corre- 
lation of 1.0 is due to the variability in the data. Second, we took the 
data from each pair of neurons and shuffled the stimulus conditions 
randomly relative to the responses, so that any relationship between 
the average responses of the two neurons to any stimulus would have 
been broken. Any apparent correlation in this shuffled data must have 
arisen from the variations that are not related to the stimuli. Any cor- 
relations above this level can be considered significant. Note that our 
estimate of the noise correlation is much less sensitive to the sample 
size because it is computed directly from the differences from the average 
across all of the trials, typically over 1000. 

Information calculations. We used information theory to search for 
relations in our data that cannot be found using linear regression tech- 
niques. For example, the relationship between adjacent neurons could 
be a function of the two responses taken together. One possible code of 
this type would occur if the signal from a single neuron was quite 
variable, but the difference between the responses of two adjacent neu- 
rons was very precisely determined by the stimulus. This type of in- 
formation can be detected only by examining the responses of the neu- 
ronal pairs together, and we will refer to this situation as a cooperative, 
or synergistic, code. Regressing the response of one neuron against the 
responses of the other will not identify such a relation. However, in- 
formation theory can be used to detect such relationships. 

The probability of correctly identifying the identity of a stimulus by 

knowing the neuron’s response can be quantified by information theory. 
Transmitted information can be calculated from the probabilities of 
occurrence of stimulus-response pairs using 

T(s; R) = 2 I 2 p(rk I s,)h 
P(rk I s,) 

/ k 
P(r ) 

k 

where T(S, R) is the average amount of information transmitted about 
the stimuli by the responses, p(s,) is the probability of occurrence of 
stimulus s,, p(rJ is the probability of occurrence of response r,, 
and p(rk 1 s,) is the probability of occurrence of response r, given that 
stimulus s, was presented (Shannon, 1948; Abramson, 1963; Optican 
and Richmond, 1987; Optican et al., 199 1). If the probability of a correct 
guess is higher than it would be had a stimulus been selected at random, 
then the neuron has carried information about the stimulus. Since in- 
formation theory depends only on probabilities of occurrences, this part 
of the calculation is model-free. Using information theory, any non- 
random relationship, linear or nonlinear, can be quantified regardless 
of its underlying mechanism. 

To study how the information carried in the responses of adjacent 
neurons is related, we first calculated the information for each neuron 
separately, and then for the pair taken together, that is, jointly. Because 
information theory takes the noise into account, this calculation was 
carried out with the coefficients of the principal components from the 
individual responses. If neurons are independent, then the joint infor- 
mation should be equal to the sum of the information calculated sep- 
arately. If the neurons carry information that is a function of both 
responses taken simultaneously, that is, synergistically, then the joint 
information should be greater than the information calculated by adding 
the information for each neuron taken separately. 

At present, we cannot calculate the amount of transmitted informa- 
tion carried by more than five principal components taken simulta- 
neously. Therefore, for the joint calculation, we used only two principal 
components from each neuron, for a total of four components. 

Cross-correlograms. To compare our results with those obtained 
through cross-correlation techniques, we calculated the cross-correlo- 
gram between each pair of adjacent neurons. For every spike that oc- 
curred for one neuron, we added to a histogram the relative times of 
occurrence, or lag, of all the spikes that occurred for the other neuron, 
* 50 msec. Because our technique of multiunit analysis could not detect 
simultaneous action potentials, we did not calculate the cross-correlo- 
gram for zero lag (* 0.5 msec). We calculated a control cross-correlogram 
by randomly shuffling the neuronal responses for each stimulus before 
performing the computations. The actual and control cross-correlo- 
grams diverged only from the shuffled at delays centered around zero. 
We chose an interval (always f 50 msec) that was just greater than the 
widest interval for which the two histograms diverged. We applied the 
Wilcoxon signed rank test to these data over the same interval for all 
28 data sets. 

Results 

The neurons in this study were recorded from the same two 
monkeys, and in the same areas of IT cortex, as in a previous 
study (Eskandar et al., 1992). We searched until we isolated one 
unit that responded clearly to the visual stimuli. We required 
that our multiunit analyzer differentiate at least one other well- 
isolated unit. We did not require that the second unit be clearly 
driven by the stimuli. We bypassed single neurons. Although 
we did not deliberately search for nonvisual units, we encoun- 
tered 23 locations with differentiable units that were bypassed 
because none was clearly visually responsive to our stimulus 
set. In addition, we isolated four pairs of units that were deter- 
mined to be nonvisual by inspection as the experiment was 
underway, at which point the recording was terminated and the 
search for new units continued. Thus, it seems that neurons that 
responded to our stimulus set were located in patches. We gath- 
ered data from 28 pairs of neurons, 14 from each monkey. For 
each distinct stimulus condition, there were an average of 16.2 
+ 2.2 trials (range, 5-58) for all of the neurons in this study. 
Either the stimulus pattern, behavioral context, or both elicited 
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significant response modulation for 55 of 56 (98.2%) of the 
neurons in this study, for at least one of the first three principal 
components of the response (ANOVA, Fig. 3). 

In 89% (50 of 56) of the neurons, the coefficients of the second 
or third principal component showed significant stimulus de- 
pendence (ANOVA). This result is in accord with an analysis 
done on the first three principal components in a similar study 
in IT cortex that used the identical paradigm (Eskandar et al., 
1992). Thus, both the strength and the temporal modulation of 
the stimulus-dependent responses of the great majority of these 
neurons were affected by both stimulus pattern and behavioral 
condition. 

When the data from a pair of neurons were examined, the 
two neurons sometimes had very similar changes in firing rate 
as the stimulus pattern was changed (Fig. 4A). Had only these 
two patterns been used, it might have been concluded that the 
neurons were performing essentially the same function. How- 
ever, the same two neurons had very different changes in firing 

Figure 4. Similarities and differences 
in responses from two adjacent neu- 
rons. The continuous waveforms above 
the rasters are the spike densities with 
standard errors, an estimate of the 
probability that there will be a spike 
during that millisecond. The dark bars 
under each response denote the time 
that the stimuli were on. These data 
were taken from stimuli presented in 
the sample condition. The vertical bar 
indicates stimulus onset and, in the spike 
density diagrams, its height corre- 
sponds to a probability of 0.1 that a 
spike will occur in a 1 msec interval, or 
an instantaneous firing rate of 100 
spikes/set. A shows an example where 
the two neurons responded in a nearly 
identical manner to two different pat- 
terns, and B shows an example from 
the same pair of neurons where they 
responded differently. 

rate when two other patterns were presented (Fig. 49, suggesting 
that these two neurons had different functions. Examples where 
two neurons appeared to be responding to the stimuli either 
similarly or differently can be easily culled from the whole data 
set (Fig. 5). To determine the extent to which the responses of 
adjacent neurons were actually independent, we examined the 
correlations between neurons with linear regression, and their 
degree of independence with information theory. 

Correlations for signal and noise 
In general, the response strength of one neuron showed very 
little correlation with the response strength of its simultaneously 
recorded neighbor. The correlation, that is, multiple RZ, of the 
coefficients of the first principal component of one cell versus 
the coefficients of the first principal component of the other cell 
for all patterns and all conditions was 0.057 f 0.017. The 
multiple R* is a direct measure of the amount of variance in 
one cell’s responses that can be accounted for by the second 
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cell’s responses; thus, on average only 5.7% of the variance of 
one cell’s response strength can be accounted for by examining 
the response strength of the adjacent cell. As described in Ma- 
terials and Methods, we separated the responses into a signal 
(the average value of the responses for all repetitions of a par- 
ticular stimulus) and noise (the difference on a trial-by-trial basis 
between the response of a neuron and the average value for each 
particular pattern and stimulus condition). The ratio of the vari- 
ance of the signal to the variance of the noise for the response 
strength as represented by the first principal component was 
0.21 * 0.02 (*SE). 

For the pair of cells illustrated in Figures 4 and 5, linear 
regression for the first principal component of the signal from 
one neuron versus the first principal component of the signal 
from the other showed that 25% of the signal from one neuron 
could be accounted for by knowing the signal from the other; 
that is, the signals show little correlation. The multiple R* be- 
tween the’average values of the coefficients of the first principal 
component of the signal from one neuron versus the coefficients 
of the first principal component of the signal from the adjacent 
neuron for all 28 pairs is 0.187 * 0.057 (range, 0.00-0.45; 
Fig. 6). 

To better interpret these results, we estimated the effect of 
the number of trials on their reliability (see Materials and Meth- 
ods). To control for the finite number of trials per stimulus, we 
resampled the data with replacement twice for each neuron to 
produce two data sets that should have had a multiple RZ of 
1.0. However, the average multiple R2 for this control was 0.65 
f 0.08, which, although less than 1.0, is substantially greater 
than the value of 0.187 obtained from the actual data. The 
control R2 was greater than the actual R2 for every pair of neu- 
rons in this study (nonparametric sign test, p < 0.000 1). Thus, 
the general lack of correlation between the responses of adjacent 
neurons in our results is not a consequence of estimating the 
average response to a stimulus from a small number of trials. 
For another control, we shuffled the responses for both members 
of the pair of neurons, and then correlated them. The multiple 
R2 averaged 0.012 + 0.003, which is substantially below the 
unshuffled correlation above (p < 0.001). The multiple R2 is 
therefore not a consequence of having studied neurons with 
completely uncorrelated responses. 

The multiple R2 for the coefficients of the first five principal 
components from one cell versus the coefficients of the first 
principal component for the other cell in each pair was 0.22 f 
0.03; that is, the coefficients of the first five principal com- 
ponents of one neuron can on average predict at most 22% of 
the variance of the signal represented by the coefficients of the 
first principal component of an adjacent neuron. Therefore, there 
is no linear mapping between different aspects of the response 
of one cell that can be used to predict the response of one of 
the components in the adjacent cell. 

The noise correlations were uniformly small; only 5.5 f 0.8% 
(range, 0.0-22.0) of the noise for the coefficients of the first 
principal component from one neuron could be predicted from 
the noise on the coefficients of the first principal component of 
the adjacent neuron (Fig. 6). Similarly, using the coefficients of 
all five principal components from one cell to predict the coef- 
ficient of the first principal component from the other, only 6.3 
f 1.0% of the noise variance on one cell could be accounted 
for by the noise on the adjacent cell. Thus, for either the response 
magnitude or the temporal modulation, the noise in the re- 
sponses of adjacent neurons shows little correlation. 

A 

B 

wolsh353 

Figure 5. Illustration of the lack of correlation of responses in two 
neurons. Here we show the responses to the 16 positive contrast stimuli 
for the sample case. Both cells responded strongly to the visual stimuli, 
and had similar baseline firing rates. The first cell (A) tended to fire in 
a graded manner, with only a few stimuli eliciting the maximum firing 
rate. However, while the second cell (B) was also strongly affected by 
this stimulus set, it responded with the same level to many stimuli. 
Linear regression showed that only 25% of the variance of the average 
response to each stimulus could be predicted by using the average re- 
sponse of the second neuron. Thus, while not completely uncorrelated, 
the response properties of these two neurons are clearly different. The 
R2 for the noise, which is simply the difference from the average on a 
trial-by-trial basis, was 0.045, almost completely uncorrelated. Fiducial 
marks are the same as in Figure 4. 

The number of trials used in calculating the noise correlation 
was 2069 + 285 (range, 633-7509). Thus, there is almost no 
uncertainty in these estimates. Correlating the outputs of two 
simulated neurons that have uncorrelated noise, using the same 
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0 Magnitude H Magnitude + 
Temporal Mod. 

Figure 6. Variance in the response strength of one neuron accounted 
for by the response of the other. The open bars show the amount of 
variance accounted for in the magnitude of the response of one neuron 
using only the magnitude of the response of the other. The shaded bars 
show the amount of variance accounted for in the magnitude of the 
response of one neuron using the first five principal components from 
the other cell (see Materials and Methods). The analysis was done for 
both the signal and the noise separately. 

number of trials and amount of variance as for our actual data, 
results in a multiple R2 of 0.0022, that is, virtually zero. 

We calculated the correlation between the coefficients of the 
first principal components from adjacent neurons for each be- 
havioral condition separately (Fig. 7). There were no significant 
differences between the correlations for any pair of conditions. 
The greatest differences were between the match and nonmatch 

SM SN M N 

Average 

SM SN M N 

Noise 

Figure 7. Graph of the correlations between the average and the noise 
under the different behavioral conditions. SM stands for the sample 
before the match condition, and SN for the sample before the nonmatch 
condition. The sample condition was partitioned in this way in order 
to have equal numbers for comparing the different conditions, and so 
that the error bars between the different conditions may he compared 
directly. Mis the matching condition, and Nthe nonmatching condition. 
While there was a tendency for the correlation of the signal to be higher 
in the nonmatch than the matching condition, and for the correlation 
of the noise to be lower in the match than the sample condition, these 
differences were not statistically significant. 

M 
d 

Redundant Independent Synergy 

lo+ 

pairs 

Fraction of Joint Information 

Figure 8. The fraction of the joint transmitted information that is 
accounted for by the sum ofthe information transmitted by each neuron 
separately. The vertical arrow indicates the point of exact independence. 
Synergistic codes would cause the data to fall to the right of the arrow, 
and redundant codes to the left. The 0.5 level is the point at which two 
neurons would be if they were redundant and had correlated noise. 
(Data below the 0.5 level are precluded, because the joint information 
cannot be less than the information for any single neuron.) The results 
show that the information carried by adjacent neurons is closer to being 
independent than redundant, and do not indicate either very strong or 
widespread occurrence of synergistic codes. 

conditions for the signal (t test, p = 0.21), and between the 
sample before the nonmatch and the match conditions for the 
noise (t test, p = 0.13). Thus, the behavioral condition did not 
significantly affect the degree of correlation between either the 
signal or the noise of adjacent neurons. It was not possible to 
determine the correlation separately across the three different 
behavioral conditions, because three data points are insufficient 
to perform a meaningful linear regression. 

Information 

To compare our results with those from previous studies (Es- 
kandar et al., 1992), we calculated the information transmitted 
by each neuron individually using the coefficients of the first 
three principal components. The mean information transmitted 
about a stimulus for all 56 cells was 0.23 + 0.04 (*SE) bits. 
Using only the coefficient of the first principal component, the 
mean transmitted information was 0.14 * 0.04 bits, which is 
only 6 1% of the preceding value. Because our criterion for ac- 
quiring data was that only one cell of a pair need be visually 
responsive, we averaged the transmitted information using only 
data from the one cell of each pair with the highest transmitted 
information. This yielded values of 0.29 + 0.05 bits using the 
coefficients of the first three principal components, and 0.20 + 
0.04 bits for just the coefficient of the first principal component, 
which is 67% of the value for three. These results are similar to 
those from a previous study performed on single neurons in IT 
cortex (Eskandar et al., 1992). 

We calculated the information transmitted by each cell sep- 
arately about the stimulus set, and by both cells of the pair taken 
together. To check for joint, or synergistic, codes, we calculated 
the percentage of the joint transmitted information accounted 
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for by the sum of the transmitted information calculated for 
each neuron separately (Fig. 8). If the joint information consis- 
tently exceeded the sum of the information for each pair sep- 
arately, this would be evidence for a synergistic code. Of the 28 
pairs, the joint information exceeded the sum ofthe information 
from each neuron separately by a maximum of 20.1%. The 
average of the joint information was 92.0% for all of the pairs. 
Thus, we did not find evidence for either very strong or wide- 
spread synergistic codes. 

Simulated neuronal pairs 

we controlled the response characteristics. Figures 9-l 1 show 
three simulated pairs of neurons that use three different strat- 
egies for encoding information about a stimulus: redundant with 
independent noise, independent, and synergistic. There are 16 
different stimulus conditions, and each stimulus is presented for 
20 trials. Each simulated neuron responds with a burst of white 
noise, and the average response to each stimulus is graphed. In 
these examples, only the mean firing rate was modulated by the 
stimulus. The transmitted information was calculated for the 
response magnitude of each cell separately, T, and T,, and also 
for the responses of both cells jointly, T,,,, and then compared. 

We tested the abilities of linear regression and information the- Because our spike generation process was always the same, 
ory to detect differences in coding using simulations in which the cross-correlations between neuronal pairs are identical for 

Figure 9. Simulated neuronal pairs 
with redundant information. The two 
panels show the results from two sim- 
ulated neurons. The simulation used a 
number of trials and a level of noise 
similar to those in our actual data, and 
all of the same analyses were per- 
formed. There were only 16 stimuli in 
this simulation, and 20 trials for each 
stimulus. Each simulated neuron re- 
sponded to a stimulus with a burst of 
white noise, whose strength was pro- 
portional to the number ofthe stimulus. 
The response characteristics of the two 
neurons were identical, although the 
noise was independent. This resulted in 
a multiple R* between the average re- 
sponses of0.87, and 0.043 for the noise. 
The information calculated for neuron 
A (left) alone was 0.72 bits, and for neu- 
ron B (right) alone was 0.67 bits, The 
information calculated from a joint 
code, that used the responses from neu- 
rons A and B simultaneously, was 1 .O 1 
bits. 

Independent Example 

TA+B: l-51 Bits 

TAG O-72 Bits Tg: 0.79 Bits 

Figure IO. Simulated neuronal pairs 
with independent information. This fig- 
ure shows the results of a simulation 
that is nearly identical to that in Figure 
9, except that the response character- 
istics of the two neurons are indepen- 
dent. This resulted in a multiple R2 of 
only 0.0127 for the average of the re- 
sponses, and 0.0007 for the noise. The 
actual joint information is 1.5 1 bits, and 

,h ,kw li+%&kj )!+&&I the prediction assuming independence isalso151bits 
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Synergistic Example 

TA+B: 0.64 Bits 

Figure 1 I. Simulated neuronal pairs 
with synergistic information. In this 
simulation, the response strength of the 

TA: 0,OO Bits Tg: 0.00 Bits 
first neuron varies randomly irrespec- 
tive of the stimulus. However, the re- I I I I 
sponse of the second neuron will be the 
same as the resnonse of the first neuron 
for some stimuli, and either larger or 
smaller for other stimuli. Thus, the re- 
sponse of one neuron in isolation can 
yield no information about what the c 

j.j&&$ 

stimulus was, but the responses of both 
neurons can yield considerable infor- 
mation. The information is zero from 
either alone, but it is 0.64 bits when 
calculated from the joint responses of 

~$& ~~~ 

neurons A and B. In this case the re- 
snonse of one neuron cannot be inter- , I I I I . 
ireted without using the responses of 
its neighbor. 

all three cases. For the example here, the use of white noise as 
the response meant that the cross-correlograms were always 
perfectly flat, independent ofthe functional relationship between 
the two simulated neurons. At the other extreme, we could have 
constrained the spike generation process to produce only a spike 
on even 5 msec boundaries, but left everything else unchanged. 
In this case the correlogram would show strong peaks at 0 msec, 
+- 5 msec, f 10 msec, and so on, but the functional relationships 
between the mean firing rates of the two neurons would have 
been completely unaffected. Thus, while cross-correlation is quite 
sensitive to the details of the mutual spike generation process, 
it is of limited utility in determining how the messages carried 
by pairs of neurons are related, at least for the time scales that 
we examined in this study. 

In the simulation in Figure 9, the response strength was a 
function of the stimulus, and both simulated neurons carried 
the same message. The noise was completely uncorrelated be- 
tween the two neurons. The multiple R2 between the average 
responses was 0.87, and the multiple R* between the noise was 
0.043. The multiple R2 was not 1.0, because the finite sample 
size prevents us from knowing the true average response for a 
particular stimulus. In this example, the correlation between the 
average response for one neuron and the average response cal- 
culated from data from the same neuron randomly resampled 
is 0.9 for the first cell versus itself (multiple R*), indicating that 
the lack of perfect correlation was indeed due to the effect of 
noise on the means calculated from a finite sample size. 

In the simulation in Figure 10, the response strength was a 
function of the stimulus, but the two simulated neurons carried 
independent messages. The multiple R2 between the average 
responses was 0.0127, and the multiple R2 between the noise 
was 0.0007. Therefore the amount of information transmitted 
should be the sum of the information transmitted by each neu- 
ron separately for a finite noisy sample T,, + TB = T,,,. 

It is also possible that adjacent neurons cooperate in trans- 
mitting information about a stimulus. In the simulation in Fig- 

ure 11, the response strength of the first neuron varies randomly 
irrespective of the stimulus. However, the response of the first 
neuron will be the same as the response of the second neuron 
for some stimuli, and either larger or smaller for other stimuli. 
Thus, the average responses of both neurons are identical and 
do not depend upon the stimuli. Although the response of one 
neuron in isolation can yield no information about what the 
stimulus was, the responses of both neurons considered jointly 
can nevertheless yield considerable information, which infor- 
mation theory can detect. Thus, T.,,, >> T, + T,. 

Cross-correlograms 

Seventeen of the 28 pairs of neurons had response cross-cor- 
relograms that were significantly different from the control (p 
< 0.05, Wilcoxon signed rank test). Figure 12 shows two cross- 
correlograms, one significant and one not. Due to the limitations 
of our multiunit analysis technique, the cross-correlation for 
zero lag (the interval within 0.5 msec ofzero) was not calculated. 
The multiple R2 for the cells with significant cross-correlograms 
was 0.18 f 0.14, and 0.11 f 0.14 for the cells that did not 
have significant cross-correlograms. This trend was not signif- 
icant (t test, p = 0.105). In the examples shown in Figure 12, 
the values of R* for the coefficients of the first principal com- 
ponents for both pairs of neurons were similarly low, 0.15 for 
the nonsignificant one and 0.22 for the significant one, showing 
that the cross-correlogram and the correlation of the average 
values of the first principal component measure different aspects 
of the data and need not be related. 

Discussion 
As a step toward understanding the relationships among neurons 
within local groups, we recorded from adjacent pairs of neurons 
(i.e., recorded from the same microelectrode) in IT cortex. Be- 
cause the neurons were close, we expected that they might share 
many common inputs, and the cross-ccorrelogram data support 
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this expectation. However, this does not necessarily imply that 
they carry the same information. 

We report two major findings. First, the signals carried by 
two adjacent neurons in IT cortex are nearly uncorrelated and 
almost independent. Second, the noise carried by adjacent neu- 
rons is even more uncorrelated than the signal. However, even 
the small amount of redundancy we find severely constrains the 
amount of information that can be carried by a pool of neurons. 
These results lead us to a new concept about how small, local 
groups of cortical neurons are organized; namely, their orga- 
nization is constrained by the need to avoid correlated signals 
and noise. 

Independence and redundancy 

At any given instant, the amount of information about a visual 
stimulus is limited to that carried by the optic tracts, on the 
order of lo6 fibers from each eye (Bruesch and Arey, 1942). This 
is because changing the representation of a signal cannot increase 
the absolute information content, although the new represen- 
tation may be more convenient for further processing. Previous 
work indicates that the information-carrying capacity of fibers 
in the optic tract is not radically greater than for single visually 
responsive neurons found in several cortical areas (McClurkin 
et al., 199 1 b). Therefore, the large numbers of neurons in cortex 
dealing with the visual process carry in aggregate no more in- 
formation than the relatively few fibers in the optic tract. 

This constraint on the information capacity of visual cortical 
areas is extremely broad, and says nothing about how redun- 
dancy might be manifested. The simplest situation would be to 
have large populations of neurons carrying identical messages, 
with the signals from perhaps thousands of neurons averaged 
to produce a single highly precise message. However, this strat- 
egy has problems. For one thing, it makes extremely inefficient 
use of neurons. As the number of neurons in a population in- 
creases, the signal-to-noise ratio rises as the square root of the 
number of neurons. Furthermore, this presupposes that the noise 
on different neurons is independent. If neurons had the same 
or nearly the same response properties and had many of the 
same inputs, then it would be impossible for them to have 
uncorrelated signals and noise. When averaging across multiple 
noisy elements, there will be no improvement to the extent that 
the noise is identical. 

We suggest that it might be so inefficient to have many neu- 
rons doing essentially the same processing that it is precluded 
by design. Because there are many more neurons in visual cor- 
tical areas than there are fibers in the optic tract, at some level 
the representation of a visual stimulus in cortex must be mas- 
sively redundant. This redundancy could be satisfied by small 
overlaps in the response properties of an extremely heteroge- 
neous population of neurons, such as we have seen here. 

The amount of redundant information that we found seems 
at first glance to be low. However, finding that the information 
carried by adjacent neurons is not completely independent plac- 
es an upper bound on the amount of information that can be 
represented by a pool of neurons. This upper bound is simply 
l/y times the amount of information transmitted by a single 
neuron, where y is the fraction of the amount of information 
that is common between any two neurons (Fig. 13). If cortical 
neurons were constrained such that all pairs were redundant to 
the degree found here, it would be impossible to represent more 
than a few bits of information no matter how many neurons 
were used. Because we can recognize a large number of distinct 
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Figure 12. Cross-correlograms. In A and B, the dark line represents 
the cross-correlation between the spikes from two neurons, that is, the 
probability that, given a spike on one neuron, there would be a spike 
on the other neuron at that delay. The dashed line represents a control 
where the order of the trials for each stimulus class was shuffled before 
calculating the cross-correlation. The Wilcoxon signed rank test was 
used to judge the significance of the difference between these two lines. 
The cross-correlogram in B is significant @ < 0.05), and the one in A 
is not. C and D show the scatterplots of the average for each stimulus 
condition (signal) for the first principal components for the correspond- 
ing pair of neurons in A and B. Linear regression of the first principal 
component between the neurons of each pair gave a multiple R2 of 0.15 
in C and 0.22 in D. Thus, these two pairs of neurons had essentially 
the same functional relationship at the level of the first principal com- 
ponent, that is, the response strength, even though the cross-correlation 
was quite different. 

visual patterns, it is clear that more than a few bits of infor- 
mation must be represented in the visual system. Because of 
the devastating impact of even a small amount of redundancy, 
we propose that the amount of redundancy must decrease as 
the distance between the neurons increases. Our analysis of the 
effect of even small amounts of mutually redundant information 
shows that, for preserving information, it is important that neu- 
rons be as independent as possible. 

Noise 

To the extent that two neurons are performing weighted sums 
of common afferents, the noise carried in their responses should 
tend to be correlated to the same degree that the signal is. Our 
results show that there is far less correlation of the noise in the 
responses of adjacent neurons than of the signal. This could 
arise from a combination of at least three mechanisms. 

First, most of the noise in the output of a neuron could be 
intrinsic to the neuron, that is, not present in its inputs, but 
generated by internal processes such as random fluctuations in 
neurotransmitter release or membrane potential. Although in- 
tuitively it might seem that noise is detrimental, there is a line 
of thought suggesting that adding noise to a neuron’s responses 
could serve to linearize its properties (Kroller et al., 1988). In 
that case large amounts of intrinsic noise might even be a useful 
property. In spite of this theoretical possibility, it seems unlikely 
to us that a neuron could have an intrinsic noise significantly 
greater than the noise in any one of its inputs because these 
inputs come from other neurons, which would presumably have 
similar levels of intrinsic noise. 
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Figure 13. Graphical illustration of how information adds with in- 
creasing numbers of mutually redundant neurons. The amount of trans- 
mitted information is represented by the area ofthe circles. With neuron 
a alone, the total amount of information is just the area of a (A). When 
we add neuron b to neuron a, the total information is increased by less 
than the area of b alone, represented by the unshaded area of B. The 
total amount of information is the union of a and b, which is 

u u b = u + (b - (a n b)). 

When a third lieuron is added, the amount of new information added 
to the total is smaller than when b was added to a, again represented 
by the unshaded urea in C. The total amount is now 

aubuc=a+(b-(anb)) 
+ (C - (c n a) - (c n b) + (a n b n c)). 

We assume a population of neurons that each carry one bit of infor- 
mation, and that each pair has the same fraction of information that is 
redundant between them, y, where y varies from 0 (no overlap) to 1 
(complete overlap). Then the total amount of information when a second 
neuron’s response is considered along with that of the first will be 
T tot*, = 1 + (1 - y), where y corresponds to the a n b term. When a 
third neuron is added, carrying information that is mutually redundant 
with each of the other two, then the total information will be T,,,,, = 
1 +(l -y)+(l -y-y+yZ).They*termcorrespondstotheuf’ 
b n c term above. It can be inferred that, for a pool of n neurons that 
satisfy these constraints, the total amount of information is T,,,, = 
Z;=i’ (1 - JJ)‘. This converges to the value l/y, so even for arbitrarily 
large numbers of neurons, if they are all mutually redundant to the same 
degree, then no more than this amount of information can be carried. 
If neurons carty other than 1 bit, this result should be multiplied by 
that amount. For the neurons in this study, the joint information was 
an average of 0.9 of the sum of the individual information (see Fig. 8), 
indicating that the value of y for these neurons is 0.2. While one might 
at first assume that this value should be 0.1, consider that the total 
amount of information is twice the 0.8 of the information for each 
neuron, plus the redundant 0.2 amount of information counted only 
once. The expression n = log( 1 - fl/log( 1 - y) gives the number of 
neurons n needed to carry f percent of the maximum possible infor- 
mation in a pool withy amount of mutual redundancy between all pairs. 
For a value of y of 0.2, 95% of the maximum amount of information 
would be carried with just under 14 neurons. 

Second, the inputs could be segregated, and adjacent neurons 
could be receiving afferent fibers from completely different neu- 
rons, yet still be constructing responses that have some overlap. 
This is possible, but seems unlikely, because the significant cross- 
correlograms indicate that a majority of the pairs of neurons in 
this study share some common inputs or are closely connected 
in some way. 

Third, the independence of the noise may be a result of dif- 
ferent temporal filtering. Suppose that two adjacent neurons 
have different time courses in their sensitivities to their inputs, 
that is, different temporal filtering properties. Different temporal 
filters can have overlapping sensitivities but uncorrelated noise, 
because they look at different parts of the same input signal. If 
this turns out to be the case, then not only is temporal modu- 
lation of neuronal signal present, but it is essential for the normal 
functioning of neurons in IT cortex, and perhaps for the whole 
visual system as well. 

Relationship between spike trains and signals 

Over 60% (17 of 28) of the pairs of neurons in this study had 
significant cross-correlograms. The cross-correlogram defines an 
effective connectivity between pairs of neurons, from which 
constraints on the pattern of local connections are inferred 
(Melssen and Epping, 1987). The cross-correlogram is highly 
stimulus dependent, and a nonsignificant cross-correlogram may 
be due to the specific stimulus set and/or experimental condi- 
tions, and does not rule out the possibility of shared connections 
(Melssen and Epping, 1987). Therefore, the 1 1 pairs that did 
not have significant cross-correlograms might well have had 
them under different conditions. We can only conclude that at 
least 17 pairs shared common inputs and/or were relatively 
closely connected in some way. However, the responses of these 
pairs were all nearly independent, suggesting that even when 
neurons share the same connections, both the signal they carry 
and the noise on this signal show only a little correlation. If 
these neurons were redundant, that is, processed their inputs 
identically, then the commonality of the connections shown by 
the cross-correlograms would have made it difficult if not im- 
possible to obtain the low values of noise correlation actually 
found. Thus, the action potentials may be considered the carrier, 
and the response (as quantified by the mean firing rate and 
temporal modulation) the signal, which is transmitted by mod- 
ulating the carrier. 

As mentioned earlier, we have defined the signal as consisting 
of the first few principal components, because they account for 
most of the variance in the responses of single neurons, and for 
most of the stimulus-related information as well (Optican and 
Richmond, 1987). However, it is possible that there is stimulus- 
related information in the later principal components when the 
responses of two or more neurons are considered jointly. If this 
were true, then the cross-correlogram could be related to the 
actual signal, and the individual spikes could not be considered 
to be solely part of the carrier. Testing this possibility would 
require a different experimental design with many more trials 
per stimulus, to compensate for the increased dimensionality 
of the data, and was beyond the scope of this study. 

Sampling bias 

Any study using currently available techniques will yield a bi- 
ased sample of neurons. It is well known that the characteristics 
of the microelectrodes used will select for neurons of a particular 
size (Abeles, 1982). For example, electrodes like the ones we 
used with tip impedances on the order of 1 MQ will tend to 
select from the electric fields of cell somas, and are more likely 
to isolate signals from larger than from smaller cells. But the 
experimental paradigm and stimulus set also introduce bias. As 
noted earlier, we encountered many neurons that were appar- 
ently not affected by our stimulus set, and we recorded only 
when at least one neuron was clearly driven by it. Presumably, 
there were many neurons in IT cortex that did not respond at 
all, even though they would almost certainly be active with 
either different stimuli or different behavioral paradigms. The 
heterogeneity of a local area of cortex is probably far greater 
than the results of this study show, and by recording only from 
cells that were active under our conditions, we have biased our 
results to show more similarity between neurons than actually 
exists. In short, the degree of correlation between adjacent neu- 
rons that we found is an upper bound. 

Our stimulus set was restricted in that it consisted of only 32 
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black-and-white patterns, all of the same scale and position, and 
the same behavioral relevance. Yet in other ways it was quite 
varied, in that it consisted of an orthogonal set of patterns that 
completely spans the space of black-and-white, 4 x 4 element 
patterns. The bias of an experiment is an inverse function of 
the richness of the stimulus set: if we had used two stimuli that 
differed from each other in only one feature, then by definition 
we would have found that the responses to them were highly 
correlated. The more restricted the stimulus set, the lower the 
chance of correctly determining the functions and relationships 
of two neurons. Furthermore, selecting stimuli based only on 
neuronal responses that seem favorable to the experimenter can 
easily lead to biased results that cannot be regarded as generic. 

Independence versus similarity 

In one respect two neurons that respond to the same stimuli are 
similar, for the obvious reason that they are both responding 
to the same stimuli. We found that the responses ofboth neurons 
of an adjacent pair were usually strongly modulated by our 
stimulus set, even though we only required this behavior of one 
neuron. Considering that we encountered many regions where 
we were unable to find any neurons that responded to our stim- 
uli, this suggests that neurons in IT cortex are arranged in patch- 
es. However, if the responses of one neuron can only be poorly 
predicted from the responses of the other neuron, as we found 
in this study, then the responses must be nearly independent. 
Just because two neurons tend to respond under the same stim- 
ulus conditions does not mean that they are performing identical 
functions. It is true that most of the neurons in this study were 
similar in some ways, in that they responded strongly to the 
same restricted stimulus set. But, as shown by the results of the 
linear regression and information theoretic analyses, how they 
responded to the different elements of this set was very different, 
that is, poorly correlated, from one neuron to the next. 

Local field potential 

It is possible that there is massive redundancy in a local area 
of cortex, but that the technique of recording pairs of neurons 
from a single microelectrode is not capable of detecting it. For 
example, consider that there are three kinds of cells, A, B, and 
C, arranged in an alternating sequence ABCABCABCABC. In 
this example, adjacent neurons would always be different, but 
there would still be massive redundancy. 

Evidence against the presence of neurons with similar re- 
sponses existing in a local population of IT neurons comes from 
other studies. Spike-triggered averaging of the local field poten- 
tial (LFP; 10 Hz to 10 kHz) of IT neurons in the same monkeys 
studied here showed no relationship between the LFP and the 
action potentials of a visually responsive cell (Gawne et al., 
199 l), suggesting that neurons in a local area of cortex respond 
to a visual stimulus in ways that are only very weakly correlated. 

Multiunit separation 

As mentioned before, our technique of multiunit separation 
cannot separate the signals from different units that occur si- 
multaneously (see Materials and Methods). Because the time 
during which overlapping spikes cannot be detected is on the 
order of half a millisecond, the combined rate of firing of a pair 
of neurons would have to become a significant fraction of 2000 
spikes per second for the number of overlaps to affect our results 
significantly. The neurons recorded in this study had combined 

firing rates well below this level: even the peak rates rarely 
exceeded 100 spikes per second (see Fig. 5). 

Although unlikely, pairs of spikes could occur simultaneously 
in a much greater proportion than would be predicted by the 
firing rates alone. In an extreme case, two spikes, each from a 
different cell, might only occur simultaneously, and be recorded 
as a single unit. In this extreme case the two neurons would be 
identical in their signal processing, and could be different only 
in their efferent targets. All existing technologies for isolating 
extracellular potentials-including those that only attempt to 
isolate a single unit-can be fooled by specific, systematic re- 
lationships in the firing pattern of the neurons. Only simulta- 
neous intracellular recordings can completely rule out all pos- 
sible artifacts stemming from the need to isolate the signals from 
multiple units. 

Other studies 

In another recent study that investigated the relationships be- 
tween adjacent neurons in the IT cortex of awake behaving 
macaques (Gochin et al., 1991) only 80 out of 155 neurons 
showed a change in activity with presentation of a stimulus, and 
only 55 out of 155 neurons showed significant differential re- 
sponse modulation by the stimulus set. We isolated 28 respon- 
sive pairs, compared with 4 isolated pairs that were determined 
to be not responsive and 23 areas with differentiable units where 
we did not even attempt to isolate them because they were not 
clearly driven by our visual stimuli. Therefore, the proportion 
of responsive neurons we isolated was roughly the same as in 
Gochin et al. (199 1). Also, although the measure of similarity 
across neuronal responses was different (they did not separate 
out the responses of a neuron into signal and noise), the basic 
result was that, whereas adjacent neurons are somewhat more 
correlated than neurons that are farther apart, they are still only 
weakly correlated, just as in the present study. 

Comparisons of psychophysical and single-unit data show 
that massive redundancy across neurons is not needed for at 
least some functions of cortex. Tolhurst et al. (1983) estimated 
that psychophysical detection may be explained by the activity 
of only a few (two to eight) neurons. Newsome et al. (1989) 
found similar results for the detection of motion by both psy- 
chophysical measures and single cells in area MT. We suggest 
that if there is no advantage to be gained from having multiple 
identical neurons, then perhaps these neurons do not exist. 

Tolhurst and Thompson (1982) found great variability of 
spatial frequency tuning in neurons that were relatively close 
(about 100 pm) in visual cortex. They hypothesized that, where- 
as a cortical column may be specialized for one orientation, 
there are many different subgroups for different spatial fre- 
quencies. The situation may be analogous in IT cortex: adjacent 
neurons often respond to the same stimulus set, but in different 
ways. This conclusion is supported by data from IT cortex re- 
ported recently by Fujita et al. (1992). 

Barlow (1989) has argued that neurons should tend toward 
independence, because this would maximize the total amount 
of information about a sensory stimulus in a population, and 
because multiple independent elements have many advantages 
in signal processing. Linsker (1988) proposed, on theoretical 
grounds, that there is a balance between independence and re- 
dundancy in the responses of neurons that maximizes the in- 
formation-carrying capacity of a population. This study explic- 
itly assumed that noise is independent, even with redundant 
neurons. To the extent that two neurons are redundant and share 
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F&we 14. Proposed model for how adjacent neurons are organized. 
Two neurons each get sets containing identical afferents. Each afferent 
carries a combination of sianal (S, and S,) and noise (N, and N,). The 
two neurons have differen; functions of-the afferents, represented as 
lines of opposite slope, such that their outputs are independent. The 
intrinsic noise terms represent sources of noise that are not a function 
of the noise on the afferents, such as random fluctuations in membrane 
potential. This type of transformation will preserve information, and 
prevent the noise from being correlated. 

the same afferents, it isn’t possible for the noise to be indepen- 
dent. We suggest that the need to avoid correlated noise may 
push the balance between redundancy and independence even 
further toward independence than indicated by Linsker’s anal- 
yses. 

Occasionally mixtures of action potentials are recorded with 
the assumption that nearby neurons have similar properties. To 
reach conclusions about the information processing of neurons, 
our results suggest that this assumption is unwarranted, and 
care must be exercised to isolate reliably the waveforms gen- 
erated from different neurons. 

Techniques that average signals across many neurons, for 
example, recording, metabolic recording, and so on, are used 
frequently. By definition, averaging techniques remove the in- 
fluence of individual variations. If the individual neurons in a 
local area all carried similar signals, then averaging techniques 
would reflect the messages actually used by the nervous system. 
However, our data show that the messages carried by individual 
neurons are quite different, and therefore averaging techniques 
will not be able to measure the messages carried by the neurons. 
These techniques can be quite valuable, in that they may give 
an indication of the relative change of the amount of processing 
going on in an area of cortex, but they are inappropriate for 
determining how that processing is carried out. 

Conclusions 
This study suggests that adjacent IT cortical neurons are not 
organized in massively redundant populations, but instead are 
heterogeneous, and are more independent than redundant. The 
noise between adjacent neurons was even more uncorrelated 
than the signal, and we suggest that ensuring that this is the case 
is a major requirement for the organization of the nervous sys- 
tem. If neurons have identical characteristics, and share the 
same inputs, then the noise must be highly correlated, and there 
will be no advantage to having many neurons, save of course 

as replacements for lost ones. We suggest further that having 
different temporal filtering properties is one way in which the 
noise between two neurons can be made even more uncorrelated 
than the signal. Avoiding the consequences of correlated noise 
and redundant information would provide strong pressure fa- 
voring selection of connection patterns and weights that keep 
the responses of adjacent neurons as nearly independent as is 
biologically possible both for signal and noise (Fig. 14). 
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