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The interspike interval spike trains of spontaneously active 
cortical neurons can display nonrandom internal structure. 
The degree of nonrandom structure can be quantified and 
was found to decrease during focal epileptic seizures. Great- 
er statistical discrimination between the two physiological 
conditions (normal vs seizure) was obtained with measure- 
ments of context-free grammar complexity than by mea- 
sures of the distribution of the interspike intervals such as 
the mean interval, its standard deviation, skewness, or kur- 
tosis. An examination of fixed epoch data sets showed that 
two factors contribute to the complexity: the firing rate and 
the internal structure of the spike train. However, calcula- 
tions with randomly shuffled surrogates of the original data 
sets showed that the complexity is not completely deter- 
mined by the firing rate. The sequence-sensitive structure 
of the spike train is a significant contributor. 

By combining complexity measurements with statistically 
related surrogate data sets, it is possible to classify neurons 
according to the dynamical structure of their spike trains. 
This classification could not have been made on the basis 
of conventional distribution-determined measures. Compu- 
tations with more sophisticated kinds of surrogate data show 
that the structure observed using complexity measures can- 
not be attributed to linearly correlated noise or to linearly 
correlated noise transformed by a static monotonic nonlin- 
earity. The patterns in spike trains appear to reflect genuine 
nonlinear structure. 

The limitations of these results are also discussed. The 
results presented in this article do not, of themselves, es- 
tablish the presence of a fine-structure encoding of neural 
information. 

[Key words: epilepsy, focal seizure, algorithmic complex- 
ity, surrogate data] 

This investigation begins with the observation that neural mes- 
sages are, in part, encoded in the interspike intervals, I,, I>, I,, 
. . . . In its most elementary form, the analysis of these data 
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begins with an examination of the statistical properties of the 
distribution formed by {I,} such as the mean, median, and SD. 
In more sophisticated studies additional properties of the dis- 
tribution such as skewness and kurtosis may also be determined. 
The value of this analysis is well established. For example, Selz 
and Mandell (1992) report that differences in the higher mo- 
ments of the interspike interval distribution can be used to 
discriminate between three kinds of biogenic amine neurons. 
These measures are, however, insensitive to the sequence of the 
spike trains. The spike train obtained by randomly shuffling the 
original data has the same distribution. Average values of the 
interspike interval and the SD, for example, are unchanged even 
though the internal structure of the original message has been 
lost. 

Efforts to find sequence-sensitive patterns in neural spike trains 
have a long history (Perkel and Bullock, 1968). In a pioneering 
series of reports, Sherr.y and Klemm (1982a,b, 1984; Klemm 
and Sherry, 1982) compared three procedures for characterizing 
interspike interval data: measures of the probability density 
function, Markov order, and entropy. They demonstrated that 
calculations of Markov order and of entropy found evidence for 
structure in spike trains that was not found by conventional 
statistical measures of the interspike interval distribution. A 
well-known example of a sequence-sensitive measure is the 
method developed by Dayhoff (Dayhoff and Gerstein, 1983a,b; 
Dayhoff, 1984). This procedure searches for preferred words in 
spike trains. Using a modified variant of this method, Chen and 
Ku (1992) found differences in the structure and repetition fre- 
quency of favored patterns in spontaneous and evoked activity 
in the substantia nigra and in hypothalamic nuclei. Other pro- 
cedures for analyzing the fine structure of neural spike trains 
have been published by Lestienne and Strehler (1987; Strehler 
and Lestienne, 1986), LegCndy and Salcman (1985), Abeles and 
Gerstein (1988), Vaadia et al. (1989) Villa and Abeles (1990) 
and Mandell and Selz (1993a,b). In this article we will apply a 
sequence-sensitive measure of complexity to records obtained 
from rat cortical neurons before and after the topical application 
of penicillin. This procedure and others related to it, notably 
the alumina focus, also have a long history. Single-unit record- 
ings from epileptogenic foci in animals (e.g., Wyler et al., 1973; 
reviewed in Wyler and Ward, 1980) and in man (Calvin et al., 
1973) have been analyzed by a variety of procedures including 
spectral analysis (Tepper and Mandell, 1987) and the burst index 
(Wyler et al., 1975; Schmidt et al., 1976). 

In the course of this investigation we will address what we 
believe to be an essential question concerning the value of this 
analysis: do these sequence-sensitive measures provide insights 
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into categories of neural behavior that could not be obtained 
by a systematic statistical analysis of the interspike interval 
distribution? The results presented here suggest that the answer 
is yes. Analyses based on calculations of algorithmic complexity 
show that it is possible to identify distinct classes of neural 
behavior. Some spike trains display significant levels of se- 
quence-sensitive structure while others are profoundly disor- 
dered. While this separation is readily apparent when complex- 
ity is measured, further calculations showed that the classification 
would not have been discovered if the examination was limited 
to the analysis of the interspike interval probability density 
function. 

The usefulness of complexity measurements in neuroscience 
is not limited to the analysis of interspike intervals. Other mea- 
sures of complexity have been applied to the analysis of the 
electroencephalogram (Wu and Xu, 199 1; Xu and Wu, 1992) 
and to animal behavior (Paulus et al., 1990). Selz and Mandell 
(1993) have used measures of complexity to characterize ex- 
periments in which human subjects eliminate lattice points from 
a computer screen with a mouse-driven cursor. Pilot studies 
comparing results obtained with normal controls against sub- 
jects presenting a variety of personality disorders showed a cor- 
relation between complexity measures of behavior and diag- 
nostic category. 

Context-.fiee grammar complexity 
Several alternative definitions of complexity have been pub- 
lished (Kolmogorov, 1965; Zvonkin and Levitt, 1970; Chaitin, 
1974). The specific definition used here, the context-free gram- 
mar complexity, has been presented in greater detail by Jimenez- 
Montaiio (Ebeling and Jimenez-Montaiio, 1980; JimCnez-Mon- 
taiio, 1984). This definition is an evolute of Kolmogorov’s and 
Chaitin’s, who held that the complexity of a message can be 
quantified by determining a measure ofthe length ofthe program 
required to generate the message. The procedure is best de- 
scribed by considering a specific example in which an upper 
bound of the complexity of a sequence of symbols is estimated. 
The choice of a procedure for reducing an experimentally ob- 
tained spike train to a sequence of symbols will then be con- 
sidered. Alternative definitions of complexity and their possible 
advantages will be considered in the last section of this article. 

Consider the following binary symbol sequence: 

M=101101011010001001 

a=01 

b= la, 

where exponentials are used to compress repeated symbols. 
It is necessary to assign a quantitative measure to the amount 

of information encoded in a message that consists of symbols 
and their exponents. Since a limited number of symbols are 
used, each symbol can be encoded in a fixed number of bits. 
The exponents represent a special case since, in general, there 
is no upper bound on their potential size. The number of bits 
required to encode any integer as a binary string is, by definition, 
the smallest integer that is at least as large as the number’s base 
2 logarithm. A qualitative elaboration of this argument is given 
in Chaitin (1975). A more technical presentation is given in 
Chaitin (1974). 

In the implementation used here, an upper bound of the com- 
plexity is determined by applying the following rules: each sym- 
bol in the sequence contributes 1 to the complexity; exponentials 
contribute logarithmically. In the final reduction seven symbols 
appear in M and the exponent 2 appears twice. M contributes 
7 + 2 log,2 to the total. Symbols a and b each contribute 2. 
The complexity estimate is 

complexity(M) = [7 + 2 log22 + 2 + 21 = 13. 

The square brackets indicate that the integer part is to be taken. 
The procedure generalizes immediately to symbol sequences 

composed of nonbinary alphabets. Consider 

M= 11231 14231 144233. 

As before, the process begins with a search for repeated pairs. 
In this case the pair 1,l and the pair 2,3 are repeated three times: 

a=11 

b=23 

M=aba4ba44b3 

The pair b,a is repeated, but it is only repeated twice. Calcu- 
lations with simple examples can easily show that replacing a 
pair that is only repeated twice with a new symbol will not 
reduce the complexity. The procedure then searches for repeated 
triples. Triple b,a,4 is repeated twice. In the case of repeated 
triples, substitution does result in a reduction of complexity 
even if the triple only appears twice. The message becomes 

The object is to reduce this message to an instruction sequence M=ac14b3 

constructed with the smallest possible number of symbols. We a= I* 
begin by searching for repeated pairs. the pair 0,l is repeated 
six times in the message. The symbol a, a = O,l, is introduced. b=23 

The message becomes c=ba4. 

M=lalaalaOOaOa. There are no other repeated triples in M. There are no repeated 

The sequence 1,a is repeated three times. A new symbol is 
introduced: 

four-symbol sequences. The reduction has converged. The con- 
tributions of M, a, b, and c to the estimate are 5 + log22, 1 + 
log,2, 2, and 3, respectively: 

a=01 

b= la 

M=bbabOOaOa 

complexity(M) = [5 + log,2 + 1 + log,2 + 2 + 31 = 13 

We have recently learned that many of the ideas incorporated 
into this compression algorithm were anticipated in a series of 

At this stage, repeated pairs have been exhausted. A search for 
repeated triples begins. None are found. The reduced message is 

reports by Wolff (1975, 1976, 1977, 1987). Wolff explicitly ad- 
dresses psychological issues and has argued that data compres- 
sion following this procedure can successfully model speech 

M= b’abO’aOa segmentation, concept formation, and language acquisition. Our 
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application of the algorithm is limited to its use as an empirical 
metric of complexity. 

A qualitative understanding of this estimate of complexity 
can be obtained by considering artificial examples. For a fixed 
number of symbols, the lowest complexity would be obtained 
with a message consisting of a single repeated symbol. An es- 
timate of 22 is obtained if the same symbol is repeated 1000 
times. The next simplest cases would be periodic messages con- 
structed with repeated symbol sequences. One thousand element 
data sets constructed by repeating 2, 4, and 8 element symbol 
strings have complexities of 22, 24, and 30, respectively. At the 
other extreme, the highest complexity estimates will be obtained 
with messages constructed using random numbers. The results 
presented in Table 1 serve two purposes. First, they determine 
the upper end of the range of binary complexity obtainable with 
1000 elements. Second, these artificial examples provide a way 
of addressing the question of how data should be reduced to a 
sequence of symbols. We examined artificially generated ran- 
dom numbers with five different distributions. The random 
number generator follows a design of Knuth’s (198 1) as imple- 
mented by Press et al. (1986). As a further check, we repeated 
the calculations using a natural source of random numbers. The 
cobalt data were obtained by measuring the time intervals be- 
tween decays in a sample of 6oCo. 

Before the complexity can be estimated using our algorithm, 
it is necessary to reduce these data to a sequence of symbols. 
The usefulness of subsequent complexity calculations depends 
crucially on the procedure used to partition the data among a 
finite alphabet of symbols. If this is done inappropriately, spu- 
rious results will be obtained. The computational results dis- 
played in Table 1 were obtained after the data were reduced to 
a binary sequence by partitioning about the mean, the median, 
and the midpoint. If the data value was less than the mean, it 
was assigned the symbol 0. If it was greater than the mean, 
symbol 1 was assigned. Partitions about the median and the 
midpoint followed the same procedure. Five independent data 
sets were used from each distribution. The average complexity 
is displayed with its SD. It is seen that partitioning asymmet- 
rically distributed data about the midpoint can give a misleading 
indication of structure. The best partition can be operationally 
defined as the partition that most effectively reveals the ran- 
domness of the original data. That is, the best partition is the 
one that gives the largest complexity estimate. These empirical 
results indicate that partitioning about the median meets this 
criterion. All binary symbol sequences reported in this article 
were constructed by partitioning about the median. 

It is possible to use calculations like those in Table 1 to es- 
timate the uncertainty in complexity estimates. Ten data sets 
were drawn from each of three stationary processes: (1) artifi- 
cially generated, uniformly distributed random numbers; (2) 
data generated by a three-dimensional generalization of the 
H&on difference equations; and (3) the cobalt data. (The same 
equipment is used for cobalt measurements and for the inter- 
spike interval measurements.) The average complexity is de- 
termined for each group of 10 data sets. The SD divided by the 
average complexity, expressed as a percentage, provides a rough 
estimate of the uncertainty in the determination of complexity. 
Uncertainty is found to vary with the data source and with the 
size of the data set. Calculations were performed with 50, 100, 
200, and 1000 element data sets. The corresponding uncertain- 
ties obtained with random numbers were 5.7%, 2.9%, 2.0%, and 
1.2%. Using the cobalt data, the uncertainties were 5. lo& 4.5%, 

Table 1. Average complexity of 1000 point data sets (N = 5) 

Symbol sequence Symbol sequence Symbol sequence 
formed about the formed about the formed about the 

Distribution mean median midpoint 

Uniform 273 f 2.1 212 f 2.9 276 * 2.0 

Gaussian 274 f 5.0 214 f 4.7 271 i 3.0 

Exponential 263 f 4.0 212 f 2.9 51 k 16.0 

Bimodal 274 f 5.7 274 f 5.4 214 k 5.4 

Poisson 275 f 2.4 276 f 4.6 271 + 4.8 

Cobalt 267 + 3.6 215 f 2.5 94 t 13.6 

Calculations with messages obtained by reducing random numbers to symbol 
sequences establish the upper bound ofcomplexity that can be obtained with 1000 
elements. Binary sequences produced by partitioning about the median are seen 
to be insensitive to the distribution. The results are reported with SDS obtained 
from calculations using five data sets for each distribution. 

2.6%, and 0.9%, and with the H&on data they were 9.9%, 7.6%, 
6.7%, and 1.7%. Most of the calculations in this study were 
performed with 1000 event data sets where the estimated un- 
certainty is on the order of 2%. The smallest data sets used were 
records obtained in 60 set epochs. On average there were 503 
events in these data sets. The smallest has 106 elements. 

Experimental Methods and Results 
Single-unit records were obtained from cortical neurons of the 
rat before and after the application of penicillin to the cortex in 
a procedure developed by Matsumoto and Ajmone-Marsan 
(1964) and Prince (1968). Adult, male, albino rats (Sprague- 
Dawley strain) in the weight range of 200-350 gm were anes- 
thetized with chloral hydrate. Animals were restrained by means 
of a stereotaxic headholder. The skin and cutaneous muscles 
were incised on the dorsal midline from the nasion to the oc- 
ciput, and the temporal muscles and the periosteum were re- 
flected from the underlying cranium. Initial measurements from 
the skull using the bregma as the origin (Zeman and Innes, 1963) 
served as an aid to approximate the location of the underlying 
somatosensory and motor cortex. A small portion of bone over- 
lying the cortex was removed by a drill until only a thin layer 
of bone remained. This thin layer was removed by chipping 
away the bone with a fine forceps along the circumference of 
the cranial defect. Saline was applied to the cortex throughout 
the procedure. Following surgery, animals were maintained on 
anesthesia as determined by monitoring the electrocorticogram, 
cornea1 and withdrawal reflexes, and pupillary dilation. Sup- 
plementary doses were administered via an intravenous canula. 

Recordings were performed in a Faraday cage. Single-unit 
records were obtained with insulated tungsten microelectrodes 
with a resistance of approximately 10 MQ. The electrode was 
positioned over the cortex in a micromanipulator and lowered 
under visual guidance to avoid damage to the middle cerebral 
artery and its branches. The frequency response of the amplifier 
was adjusted to each recording situation. Typically, we set the 
low-frequency filter at 60 Hz and the high-frequency setting at 
60 kHz. The micromanipulators, stereotaxis equipment, preamp, 
amplifiers, oscilloscope, and cage were connected to a common 
building ground. Interspike intervals were measured to an ac- 
curacy of 10 psec. In Matsumoto’s implementation of the pro- 
cedure the epileptogenic focus is created by placing 1 rn’ of filter 
paper saturated with aqueous penicillin (1 OO,OOO-200,000 U/ml 
penicillin G) directly on the surgically exposed cerebral cortex. 
We want explicitly to note that the penicillin focus is an im- 
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Table 2. Statistical properties of order-sensitive measures, 1000 
events in each data set 

Neuron C, Spon. 

I 227 

2 216 

3 266 

4 275 

5 227 

6 223 

I 258 

Average 252 

SD 22.2 

C, Pen. RC, Span. RC, Pen. 

266 1.622 2.454 

274 0.320 0.454 

270 2.952 3.667 

275 1.991 3.614 

269 0.899 1.671 

243 2.367 3.160 

214 1.167 3.506 

261 1.617 2.647 

11.2 0.902 1.209 

Significance testing (spontaneous vs penicillin treated) 
Cl: t = 2.271, p = 0.063 
RC,: t = 3.773, p = 0.009 

The values of binary complexity, C2, and the rate of complexity production, RC,, 
obtained from 1000 element spike trains partitioned about the median are dis- 
played. A paired t test was used to compare the values obtained in the spontaneous 
and the penicillin-treated case. 

perfect model of human focal epilepsy (Schwartz et al., 1970; 
Calvin et-al., 1973; Wyler et al., 1982). The method does, how- 
ever, provide a simple method for producing at least an ap- 
proximation of a focal seizure in an acute preparation. 

All neurons showed an increased firing rate in response to 
penicillin. The SD and the average deviation decreased in the 
penicillin condition. These changes were significant (mean, p = 
0.035; average deviation, p = 0.018; SD, p = 0.012, where the 
null hypothesis is that the differences observed between peni- 
cillin-induced behavior and spontaneous behavior are due to 
random variation). The statistical separation between sponta- 
neous and penicillin-treated behavior obtained by the mean and 
by the SD defines the benchmarks against which other measures, 
specifically complexity, should be compared. Other measures 
of the distribution, notably the third-order moment (skewness) 
and the fourth-order moment (kurtosis), do not show significant 
change. The distributions of interspike intervals display the long 
tails characteristic of bursting neurons. The examination of higher 
moments cannot be justified in these cases. Wyler et al. (1978) 
define the burst index of a spike train as the percentage of in- 
terspike intervals less than 5 msec. We calculated the index using 
3, 4, and 5 msec as the defining criterion. No significant differ- 
ences were observed between the spontaneous and penicillin- 
treated spike trains (p = 0.241, p = 0.5 18, and p = 0.360, 
respectively). 

Binary complexity 

Binary complexity, denoted by Cz, is the value of complexity 
obtained when the interspike interval data are reduced to a 
sequence of zeros and ones about the median. The results ob- 
tained with the 1000 event data sets are reported in Table 2. It 
is seen that, on average, the complexity increases during a pen- 
icillin seizure. However, the increase does not occur in all neu- 
rons and it is not markedly significant (p = 0.06). It is important 
to remember that the results shown in the first two columns of 
the table are obtained with uniformly sized data sets (1000 
events). Because the mean firing rate differs from neuron to 
neuron, these records cover markedly different lengths of time. 
Because timely responsiveness is an essential property of any 
successful biological system, it could be argued that complexity 

itself is not an appropriate measure. Rather, complexity gen- 
eration per unit time may be a better measure of biological 
complexity. RC, is defined as the rate at which complexity is 
generated. It is calculated by dividing the complexity by the 
corresponding time required by that neuron to fire the 1000 
action potentials. When this is done the distinction between 
spontaneous and seizure behavior is significant. The probability 
of the null hypothesis drops to p = 0.009. 

We performed calculations comparing complexities presented 
by fixed epoch data sets for 60, 120, and 180 sec. In each case 
the differences between conditions are significant, p = 0.008, p 
= 0.001, and p = 0.004, respectively. A comparison with the 
distribution-determined significance tests is of interest. In each 
case (60 set, 120 set, 180 set) the probability of the null hy- 
pothesis obtained with fixed epoch complexity is smaller than 
the smallest value obtained from the distribution. In one case, 
120 set, the value of p is less than l/10 of the smallest value 
obtained from the statistical examination of the distribution. 
Thus, the previously specified statistical benchmarks have been 
exceeded. Complexity is more effective in distinguishing be- 
tween spontaneous and seizure behavior than classical measures 
of the distribution of the interspike interval histogram. 

However, the results obtained by calculating RC, seem more 
impressive than they really are. It should be remembered that 
the mean interspike interval decreases in response to penicillin. 
RC2 is obtained by dividing the value of complexity by its cor- 
responding 1000 event epoch length. We must therefore ask if 
the impressive statistical separation seen in RC2 occurs because 
penicillin-treated neurons fire faster. Two properties of the spike 
train contribute to the complexity: (1) the number of symbols 
in the message, which is determined by the firing rate, and (2) 
the structure of the message. The high correlation between fixed 
epoch complexity and the mean interspike interval (as deter- 
mined by both Kendall’s T and the Spearman rank order coef- 
ficient) indicates that, for these neurons, the first mechanism is 
an important determinant of complexity. However, even in these 
cases, firing rate does not completely determine complexity. 
This is demonstrated definitively by the calculations with sur- 
rogate data presented in a subsequent section. 

Complexity measured with expanded symbol alphabets 

The definition of complexity used here is not limited to binary 
symbol sequences. It can be applied to sequences composed 
with larger symbol sets. The results in Table 1 argue for parti- 
tioning about the median when constructing binary symbol se- 
quences. This procedure readily generalizes to expanded symbol 
sets. An equal number of interspike intervals will be assigned 
to each symbol. For example, if four symbols are used, the 
shortest 25% of the intervals will be assigned symbol 0. The 
next 25% are assigned symbol 1, and so on. 

The complexity was calculated using 180 set epoch data sets 
and 4, 6, 8, and 10 symbol alphabets. In each case complexity 
increased in response to the administration of penicillin. Sig- 
nificance levels were p = 0.003, p = 0.003, p = 0.004, and p = 
0.005, respectively. Contrary to our anticipations, C,, is not a 
significantly better measure than Cz. When 1000 event data sets 
were examined with expanded symbol sets, it was found that 
the ability of complexity measures to discriminate between 
spontaneous and penicillin-treated behavior actually deterio- 
rated as the number of symbols increased. For 2, 4, 6, 8, and 
10 symbol alphabets p = 0.063,0.090,0.135,0.102, and 0.172, 
respectively. 
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With these data it is seen that C,, is less successful than Cz 
in discriminating between the two physiological conditions. We 
believe that we now understand why this is the case. Consider 
the limiting value when N,, the number of symbols in the al- 
phabet, approaches N1,ATA, the number of interspike intervals. 
In this limit each interspike interval is assigned to its own sym- 
bol. The resulting symbol sequence consists of NDATA unique 
symbols and has a complexity equal to NDATA. Thus, as N, in- 
creases, complexity simply becomes a measure of the size of the 
data set. Increasing N, is seen to be subject to a law of dimin- 
ishing returns. The question is how quickly does the limit be- 
come important; how rapidly does the value of complexity ap- 
proach bATA as N, increases? This question was investigated 
by examining the value of complexity obtained from sets of 
random numbers where in each case NoATA = 1000. Five sets 
of uniform deviates were investigated. The average value of 
complexity should approach 1000 as N, increases. When N, is 
equal to 10, complexity is equal to 699; that is, complexity has 
reached 70% of its limiting value when N, is 1% of NDATA. 

The preceding argument indicates why increasing N, will not 
necessarily be helpful. However, the results make an even stron- 
ger point. Increasing N, can actually result in a deterioration in 
discrimination. The reason for this has to do with the size of 
the data sets. Experimental calculations suggest that much larger 
data sets are required for meaningful complexity calculations if 
N, is greater than 2. For this reason all subsequent calculations 
in this article will focus on the N, = 2 case. 

Calculations with expanded symbol alphabets point out an- 
other limitation of this definition of complexity. Consider the 
case where N, = 10. Each symbol in the alphabet is treated as 
an arbitrary symbol. Symbol 5 does not “know” that it is be- 
tween symbols 4 and 6. Similarly, it does not “know” that it is 
very far from symbols 1 and 10. All of this structure is lost to 
this definition of complexity. 

Comparison with algorithm zero surrogates 
In the discussion of the binary complexity of fixed epoch data 
sets, C,(60 set). Cz( 120 set), Cz( 180 set), we identified two 
properties of the spike trains that contribute to the complexity: 
the number of symbols in the message, which is determined by 
firing rate; and the structure of the message. We now address 
the following question: is the pattern of the message a significant 
contributor to C2, or is C, simply an exotic way of measuring 
the firing rate? If the complexity is completely determined by 
frequency, there is little reason to compute it. 

This question can be addressed with a very simple calculation. 
Consider as a specific example the 1000 event spike train that 
was obtained from neuron 1 prior to the application ofpenicillin. 
This data set was found to have a binary complexity of C, = 
227. The spike train is defined by the sequence I,, I,, I,, . . . 
I I”““’ This sequence was subjected to a random shuffle, and the 
complexity of the shuffled sequence was measured. It was found 
to be C, = 271. This is a value typical of the results obtained 
with random numbers reported in Table 1. The original data 
set and the randomly shuffled data set have the same distri- 
bution. The average firing rate is identical for each data set. Yet, 
the complexity values are different. This indicates that the lower 
value of complexity obtained with the original data is due to 
the internal structure of the message, a structure that was de- 
stroyed by the random shuffle. Is the difference between the 
value of complexity obtained with the original data and the 
shuffled variant significant? This question can be addressed by 

performing this test with several different random shuffles of 
the original data. 

The method of surrogate data defines procedures for perform- 
ing these tests in a systematic way (see Theiler et al., 1992, for 
a review; surrogate data methods have also been used by Long- 
tin, 1993b, in his study of periodically forced sensory neurons). 
The comparison of measures obtained with original data and 
with a randomly shuffled variant of the original data is called 
the Algorithm Zero surrogate test. Given the original data set, 
a measurement is performed giving the result Mar-,. In our case 
we are measuring complexity, but this reasoning can be applied 
to any measure. Using different random shuffles, several shuffled 
data sets are produced. These are called Algorithm Zero sur- 
rogate data sets. The same measurement is performed with each 
surrogate. (M,,,,) denotes the average measurement obtained 
with surrogate data. We then ask, is M,,,,, significantly different 
from (M,,,,)? When addressing this question we want a measure 
that incorporates a sensitivity to possible variability in mea- 
surement of A4. Let csurr denote the SD of the measurements 
obtained with surrogates. Following Theiler et al. (1992) S is 
defined by 

S gives the number of SDS separating the value of the mea- 
surement obtained with the original data and its surrogates. 

The randomly shuffled surrogate examines a specific null hy- 
pothesis: there are no temporal correlations in the spike train; 
that is, the structure of the spike train is indistinguishable from 
uncorrelated noise that has the same distribution. If the com- 
plexity was completely specified by the frequency, then S would 
be identically zero. Table 3 shows the value of S obtained when 
the binary complexity is measured (M = C,) for fixed epoch 
spike trains of 60, 120, and 180 set and for 1000 event spike 
trains. Twenty surrogates were used in each calculation. 

On examining the results in Table 3 several important ob- 
servations can be made. First, S is not always equal to, or near, 
zero. For example, the average value of S for 1000 event records 
obtained prior to the administration of penicillin is 9.4. Recal- 
ling the definition of S (the number of SDs from the expectation 
value of the null hypothesis), it is seen that spontaneous neural 
spike trains possess a very high degree of structure that is de- 
termined independently of frequency. Second, it is seen that in 
most cases S decreases in response to penicillin. This is equiv- 
alent to stating that the behavior becomes less distinguishable 
from uncorrelated noise during penicillin seizures. Third, by 
comparing 60 set, 120 set, and 180 set calculations it is seen 
that, as expected, the value of S varies with time. This suggests 
that complexity in combination with surrogate data calculations 
could be used to monitor time-dependent changes in neural 
behavior. This possibility will be explored in a subsequent pub- 
lication. 

An examination ofthe S values in Table 3 indicates that some 
spike trains are essentially indistinguishable from their random- 
ly shuffled surrogates, while some have a significant degree of 
internal structure. For example, consider the 1000 event spike 
trains obtained after the administration of penicillin. The S 
values fall into two very distinct classes. When viewed in 1000 
event segments, the spike trains from neurons 2, 4, and 7 are 
disordered, while spike trains from neurons 1, 3, 5, and 6 show 
some structure. We now ask a question that is crucial to an 
assessment of the value of this analysis: could the classification 
of neural behavior based on the results in Table 3 have been 
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Table 3. Comparisons with Algorithm Zero surrogate data 

1000 
Neuron 60 set 120 set 180 set events 

S values: spontaneous behavior 

1 10.0 13.0 

2 1.1 1.0 

3 0.7 2.0 

4 0.7 0.1 

5 5.6 7.0 

6 9.7 11.5 

7 2.5 5.7 

Ave. 4.3 5.8 

SD 4.1 5.1 

S values: penicillin treated 

1 0.5 0.1 

2 0.3 1.0 

3 5.5 1.1 

4 0.0 0.8 

5 3.4 0.2 

6 8.3 11.0 

7 0.9 0.4 

Ave. 2.7 2.1 

SD 3.2 3.9 

14.2 21.3 

1.0 0.2 

1.9 2.8 

0.0 0.1 

8.4 23.3 

10.4 12.4 

3.3 5.4 

5.6 9.4 

5.4 9.8 

2.1 2.1 

1.7 0.6 

1.8 2.2 

0.3 0.4 

0.6 1.7 

16.0 9.9 

1.4 0.1 

3.4 2.5 

5.6 3.4 

The binary complexity of an Algorithm Zero surrogate is determined by randomly 
shuffling the original data, partitioning the shuffled data set about the median, 
and calculating the complexity of the resulting symbol sequence. The S value is 
a measure of the difference between the complexity of the original data set and 
its surrogates. A high value of S indicates a high degree of structure, as assessed 
by this class of surrogate, in the original data. 

made by examining the distributions of the 1000 event data 
sets? This question is addressed in Table 4. The comparison of 
the average values obtained from each group and the separation 
ratio (the larger value divided by the smaller) is displayed in 
Table 4. The average value of S from each group differs by a 
factor of 14. None of the measures obtained from the statistical 
properties of the distribution approaches this separation. Anal- 
ogous results were obtained by Selz and Mandell (199 I), who 
found that a measure of complexity similar to the one described 
here could discriminate three classes of intermittently firing 
brainstem neurons more clearly than the higher moments of the 
interspike interval distribution. 

Because randomly shuffled surrogates have the same distri- 
butions as the original data, the classification of neural behavior 
based on complexity would not have been made if the analysis 
had been limited to distribution-determined measures. We can 
now return to a question raised in the introductory remarks: do 
sequence-sensitive measures provide insights into categories of 
neural behavior that could not be obtained by a systematic 
statistical analysis of the distribution? The answer appears to 
be yes. 

Comparisons with Algorithm One and Algorithm Two 
surrogates 
The analysis with surrogate data is based on the underlying 
assumption that the frequency of the membrane potential, and 
hence the spike train, is determined by a dynamical system 
controlled by the membrane’s chemical environment. Algo- 
rithm Zero surrogates determine if the function specifying the 
frequency of the membrane potential is indistinguishable from 

Table 4. Comparison of the statistical properties of structured and 
disordered spike trains 

S values (Algorithm 0) 

Mean 

Median 

Average deviation 

Standard deviation 
Skewness 
Kurtosis 

Coefficient of variation 

Structured Disordered 
neurons neurons 
(average values) (average values) 

3.80 +- 2.81 0.27 + 0.15 

104.99 f 40.51 252.73 f 304.16 

22.18 k 12.93 33.17 f 19.01 

119.77 f 51.73 300.69 f 400.53 

182.59 k 73.54 403.61 k 522.60 

3.05 +- 0.51 2.41 f 0.53 

11.83 + 3.51 8.25 k 3.94 

174.79 f 20.61 143.59 f 24.82 

Sep- 
ara- 
tion 
ratio 

14.1 

2.4 

1.5 

2.5 

2.2 

1.2 

1.4 

1.2 

The S values for the 1000 event, penicillin-treated spike trains indicates that the 
records obtained from neurons 2, 4, and 7 are disordered, while those of neurons 
I, 3,5, and 6 display some structure. The average S value ofeach group is separated 
by a factor of 14.1. Statistical measures of the distributions differ by, at most, a 
factor of 2.5. The classification of neurons (disordered/structured) made on the 
basis of complexity calculations combined with surrogate data calculations would 
not, therefore, have been made on the basis ofan examination ofthe corresponding 
interspike interval distributions. 

noise. This class of surrogates detects the presence of any struc- 
ture in the data. Suppose random numbers were filtered by a 
linear filter. A smoothly varying waveform results. (An example 
constructed from filtered noise and its analysis with surrogates 
is given in Rapp et al., 1993a.) If a random shuffle is applied 
to the filter’s output, this smooth structure is destroyed. Applied 
to this signal, Algorithm Zero surrogates give a large value of 
S even though the underlying dynamical behavior is random. 
Algorithm One surrogates explicitly address this possibility. 
Several investigators independently presented an elegant algo- 
rithm for investigating the following null hypothesis: the signal 
was produced by the action of a linear filter on noise. A review 
of the previous literature is given in Theiler et al. (1992). This 
is a very pertinent concern in a neurophysiological application 
because the membrane acts as a filter. The time constants of 
cortical neurons are on the order of lo-20 msec (Stratford et 
al., 1989; Douglas and Martin, 1990). The neural membrane 
effectively acts as a low-pass filter and severely attenuates signals 
with a frequency in excess of 15 Hz. 

The construction ofAlgorithm One surrogates is based on the 
following arguments. A linear filter is specified by its transfer 
function, and the spectrum of linearly filtered noise will be the 
spectrum of this transfer function. The Algorithm One null hy- 
pothesis is therefore equivalent to stating that all of the signal’s 
structure is specified by it spectrum. This hypothesis can be 
tested by constructing surrogates that are generated from ran- 
dom numbers, but which have a spectrum identical to the orig- 
inal data. Algorithm One surrogates are produced in a three step 
process. (1) The Fourier transform of the original data set is 
determined. (2) The phases of the Fourier transform are ran- 
domized. (3) A surrogate data set is constructed by taking the 
inverse transform. Since the phase does not contribute to the 
spectrum, the surrogates and the original data set have identical 
spectra. 

The efficacy of Algorithm One surrogates is limited to the 
action of linear filters. Consider the following hypothetical case. 
Suppose time series {y,} was produced by the action of a linear 
filter on a set of random numbers, and that {z,} is generated by 
the rule z, = hb,), where h is a static nonlinear function. Because 
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h is nonlinear, the value of S obtained from Algorithm One 
surrogates of {z,} will be significantly greater than zero, even 
though the underlying dynamical structure is random. Algo- 
rithm Two surrogates, introduced by Theiler et al. (1992) ad- 
dress the following null hypothesis: the time series is linearly 
correlated noise that has been transformed by a static, mono- 
tonic nonlinear function. 

The first step in constructing Algorithm Two surrogates is to 
approximate h-l; y = h-‘(y), where {x,) is the original time 
series. The elements of {.v, 1 are drawn from a random Gaussian 
distribution that has the same rank ordering as {x,}. (Two time 
series have the same rank ordering if the jth element is the kth 
largest in both series.) The previous algorithm can be applied 
to {.v,} to produce iv’,}, an Algorithm One surrogate of {y,}. 
Time series Ix’,} is obtained by shuffling ix,} so that it has the 
rank structure of {y:}. By drawing element of ix’,} from set {x,}, 
but retaining the rank structure of {y:}, we have approximated 
the effect of h acting on {y:}; x; = hOi>). Time series ix:} is 
therefore an Algorithm Two surrogate of {x,}. 

The distinction between the null hypotheses of Algorithm One 
and Algorithm Two may seem insubstantial. It is, however, of 
considerable practical significance. Unlike Algorithm One, Al- 
gorithm Two preserves the distribution of the original data. 
Using this property, it is possible to construct examples of ap- 
propriately transformed random systems where Algorithm One 
gives very high values of S and Algorithm Two returns a value 
of S effectively equal to zero. We have constructed an example 
using random numbers and the complexity measure used in this 
article in which Algorithm One gives S = 3 1.8 and Algorithm 
Two gives S = 0.6 (Rapp et al., 1993b). Similar examples can 
be produced by signals transformed by the logarithmic ampli- 
fiers commonly used in many experimental systems. Exami- 
nations limited to Algorithm One can give false positive indi- 
cations of meaningful structure where none in fact exists. The 
distinction between linear and nonlinear transformations is rel- 
evant to a neurophysiological application since a membrane’s 
response to effecters is nonlinear. In the computational example 
investigated in Rapp et al. (1993a), the function h is the allosteric 
ligand binding function. Randomly constructed time series 
transformed by this function give significant values of S with 
Algorithm One and negligible values with Algorithm Two. 

Results obtained with the 1000 event data sets are presented 
in Table 5. S,, denotes the value of S obtained with Algorithm 
Zero surrogates. S,, and SAz are the values obtained with Al- 
gorithm One and Algorithm Two. Twenty surrogates were used 
in each of these calculations. The emerging typical pattern is 
S,, > S,, > S,,?. As anticipated, Algorithm 2 is a much more 
stringent test of structure. However, even with Algorithm Two, 
the calculations confirm that at least some neural spike trains 
have significant nonlinear dynamical structure. The calculations 
also indicate that the behavior becomes significantly more dis- 
ordered during penicillin seizures. 

Discussion 

We begin the discussion with a summary ofthe principal results. 
The context-free grammar complexity of single-unit cortical spike 
trains was found to increase during penicillin-induced focal sei- 
zures. Greater statistical discrimination between the two phys- 
iological conditions (spontaneous behavior vs penicillin-altered 
behavior) was obtained with the complexity than by measures 
such as the mean interspike interval, the SD, skewness, and 
kurtosis. An examination of fixed epoch data sets showed that 

Table 5. Comparisons with surrogate data, 1000 events in each data 
set 

S A0 s 
s&l. 

s, 
S&n. 

s 
PZ. 

S 
PZ. 

S AZ 
Neuron Spon. Pen. 

1 21.3 13.4 9.0 2.7 2.6 1.8 
2 0.2 0.5 0.2 0.6 0.2 0.3 
3 2.8 2.2 1.9 2.2 0.7 0.2 
4 0.1 0.5 0.1 0.4 0.3 0.1 
5 23.3 12.9 8.0 1.7 1.3 1.4 
6 12.4 11.5 6.0 9.9 9.5 4.3 
I 5.4 5.4 3.5 0.1 0.4 0.4 

Ave. 9.4 6.6 4.1 2.5 2.1 1.2 
SD 9.8 5.8 3.6 3.4 3.4 1.5 

Significance testing (spontaneous vs penicillin treated) 
sAo: t = 1.945, p = 0.100 
S,,: t = 2.442, p = 0.050 
SAz: t = 2.581, p = 0.042 

S,,, denotes the S value obtained with Algorithm Zero (random shuffle) surrogates. 
S,, denotes the value obtained with Algorithm One (random phase) surrogates, 
and S,? denotes the value obtained with Algorithm Two (Gaussian scaled) sur- 
rogates. The sequence of algorithms applies increasingly demanding tests of struc- 
ture to the spike trains. The significance test (paired t test) indicates that though 
the S values obtained with Algorithm Two are low, the values obtained in the 
spontaneous records are significantly greater than those obtained after the appli- 
cation of penicillin (p = 0.042). 

two factors contribute to the complexity: the firing rate and the 
internal structure of the spike train. However, calculations with 
randomly shuffled surrogates of the original data showed that 
the complexity is not completely determined by firing rate. The 
sequence-sensitive structure of the spike train is a significant 
contributor. 

Spontaneous neural spike trains were found, on average, to 
possess a high degree of structure that was lost by random shuf- 
fles of the original data. This structure typically decreased in 
response to penicillin. For any given neuron, the degree of order 
in its output is not fixed, but rather varies through time. By 
combining complexity measurements with surrogate data cal- 
culations, it is possible to classify neurons according to the dy- 
namical structure into distinct groups of ordered or disordered 
spike trains. This classification could not have been made on 
the basis of distribution-determined measures. Computations 
with more sophisticated kinds of surrogate data show that the 
structure observed using complexity measures cannot be attrib- 
uted to linearly correlated noise or to linearly correlated noise 
transformed by a static, monotonic nonlinearity. The patterns 
in spike trains appear to reflect genuine nonlinear structure. 

Alternative mathematical definitions of complexity should be 
investigated. The definition used here gives very high values for 
random structures such as an ideal gas, and very low values for 
highly ordered structures like a crystal. It has been argued (Hu- 
berman and Hogg, 1986) that a better measure of complexity 
would give the highest score for structures intermediate to ran- 
dom gases and perfect crystals. These issues are addressed by 
the measure of complexity introduced by Huberman and Hogg 
(1986). They consider the complexity of tree structures. This is, 
however, applicable to our data since every binary sequence of 
zeros and ones can be restated as a network. Similar ideas have 
been implemented in computational c-machines (Crutchfield 
and Young, 1989). The complexity measure introduced by 
Crutchfield and Young gives low values for periodic and for 
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random systems and higher values for chaotic systems. This is 
of particular relevance to these data since there have been a 
number of previous reports ofnonlinear structure in neural spike 
train data (Rapp et al., 1985; Mpitsos et al., 1988; Longtin et 
al., 1993b). However, when considering measures of biological 
behavior it should be remembered that, somewhat paradoxi- 
cally, the most sensitive measures of dynamical behavior are 
not necessarily the best. Sophisticated dynamical measures, for 
example, correlation dimension, are extremely sensitive to noise 
in the data. They can only be reliably applied when large, noise- 
free data sets are available (Eckmann and Ruelle, 1992; Rapp, 
1992). A more robust measure like the grammar complexity 
may prove more successful in discriminating between different 
physiological states. 

Independently oftechnical considerations about the definition 
of complexity, there may be fundamental biological limitations 
to what can be learned from the analysis of the structure of 
interspike interval spike trains. A summary of the arguments 
leading to this conclusion has been presented by Douglas and 
Martin (199 1). A neuron receives inputs from hundreds of neu- 
rons. The mean interspike interval is on the order of 100 msec 
(w = 10 Hz). The fine structure of a signal from any given input 
neuron would be lost if it were encoded against this low-fre- 
quency background. These considerations would argue for en- 
coding temporally structured signals at higher frequencies. How- 
ever, as previously noted, the neural membrane effectively acts 
as a low-pass filter. In the absence of an alternative coding 
mechanism, for example, stochastic resonance (Chialvo and Ap- 
karian, 1993; Longtin, 1993a), these arguments suggest that it 
would be difficult to construct a fine structure coding scheme 
that could be interpreted by the recipient neuron. These con- 
siderations place an important constraint on the implications 
of the results presented in this article. If limiting arguments of 
this type are valid, it would be very difficult to construct a theory 
of neural computation based on the fine structure of single neu- 
ron spike trains. While bearing this possible limit in mind, we 
should not lose sight of two points. First, some structure is often 
present. This is demonstrated by large S values obtained in 
comparisons with surrogate data. Second, the internal structure 
of the spike trains changed significantly with a change in phys- 
iological state. Therefore, if a specific goal is to characterize 
quantitatively changes in neural behavior associated with patho- 
logical states, these measures have potential value as metrics of 
behaviors that cannot be detected by an examination of the 
interspike interval distribution. 
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