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Hyperexcitable reflex blinks are a cardinal sign of Parkinson’s
disease. The first step in the circuit linking the basal ganglia and
brainstem reflex blink circuits is the inhibitory nigrostriatal path-
way (Basso et al., 1996). The current study reports the circuits
linking the superior colliculus (SC) to trigeminal reflex blink
circuits. Microstimulation of the deep layers of the SC sup-
presses subsequent reflex blinks at a latency of 5.4 msec. This
microstimulation does not activate periaqueductal gray antino-
ciceptive circuits. The brainstem structure linking SC to reflex
blink circuits must suppress reflex blinks at a shorter latency
than the SC and produce the same effect on reflex blink circuits
as SC stimulation, and removal of the structure must block SC
modulation of reflex blinks. Only the nucleus raphe magnus

(NRM) meets these requirements. NRM microstimulation sup-
presses reflex blinks with a latency of 4.4 msec. Like SC
stimulation, NRM microstimulation reduces the responsiveness
of the spinal trigeminal nucleus. Finally, blocking the receptors
for the NRM transmitter serotonin eliminates SC modulation of
reflex blinks, and muscimol inactivation of the NRM transiently
prevents SC modulation of reflex blinks. Thus, the circuit
through which the basal ganglia modulates reflex blinking is (1)
the substantia nigra pars reticulata inhibits SC neurons, (2) the
SC excites tonically active NRM neurons, and (3) NRM neurons
inhibit spinal trigeminal neurons involved in reflex blink circuits.
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Reduced dopaminergic tone in the basal ganglia (BG) produces
marked reflex blink hyperexcitability in animals (Shallert et al.,
1989; Basso et al., 1993) including humans (Kimura, 1973a). The
companion paper [Basso et al., 1996 (this issue)] demonstrates
that the superior colliculus (SC) mediates this increase in reflex
blink excitability. The present experiments identify the neuronal
linkage between the SC and the reflex blink circuitry within the
brainstem.
The rodent SC has two major descending projections. First, the

ipsilateral descending pathway originates from the entire rostral
caudal extent of the medial SC. The axons forming this pathway
terminate primarily in the parabigeminal nucleus, cuneiform nu-
cleus, ventrolateral midbrain pontine reticular formation, pontine
nuclei, and the pontomedullary reticular formation (Redgrave et
al., 1987, 1988). Stimulation of this projection system elicits de-
fensive or withdrawal behaviors (Dean et al., 1988a,b, 1989;
Mitchell et al., 1988; Redgrave et al., 1988). The second descend-
ing pathway, the contralateral tecto-reticulospinal tract, originates
primarily from the lateral SC (Dean et al., 1986; Redgrave et al.,
1987; Grantyn, 1988). These axons form the predorsal bundle,
(May and Hall, 1984, 1986) and terminate in the nucleus reticu-
laris tegmenti pontis, pedunculopontine or parabrachial area,
caudal pontine reticular nuclei, pontomedullary reticular forma-
tion, pontine raphe, and the ventral spinal cord (Redgrave et al.,
1987). Stimulation of the lateral SC elicits orienting behaviors

(Dean, 1988a) and suppresses reflex blinks in rodents (Basso et
al., 1996) and primates (Lu et al., 1993).
Many of the brainstem areas that receive lateral SC afferents

could mediate SC modulation of reflex blinks. Because SC inac-
tivation increases reflex blink excitability and SC activation de-
creases reflex blink excitability, the SC must excite a tonically
active neuron that inhibits the reflex blink circuit. The inhibitory,
midline omnipause neurons (OPNs) might fill this role. Tonically
active OPNs receive an excitatory input from the rostral SC
(Raybourn and Keller, 1977; Paré and Guitton, 1994) and cease
discharging with both saccadic eye movements (Evinger et al.,
1982; Paré and Guitton, 1994) and reflex blinks (Fuchs et al.,
1991; Mays and Morrisse, 1994). Microstimulation in the OPN
region suppresses reflex blinks in rats (C. Evinger, unpublished
observations) and monkeys (Mays and Morrisse, 1994). Neverthe-
less, OPNs are unlikely to link the SC to reflex blink circuits. First,
although microstimulation of the monkey SC suppresses reflex
blinks (Lu et al., 1994; Gnadt et al., in press), the fixation zone of
the superior colliculus that activates OPNs (Raybourn and Keller,
1977; Paré, 1994) is not the lowest threshold point for suppressing
reflex blinks. Second, if reflex blink hyperexcitability of Parkin-
son’s disease occurred because increased nigral inhibition of the
fixation zone reduced the excitatory drive to OPNs, Parkinson’s
disease could produce uncontrollable saccadic eye movements.
Clinical evidence shows that patients with Parkinson’s disease
actually exhibit an increased saccadic latency (Bronstein et al.,
1985; Rascol et al., 1989; White et al., 1989; Lueck et al., 1990;
Müller et al., 1994). Thus, distinct populations of SC neurons
appear to control saccadic eye movements and reflex blink excit-
ability. The tonically active ponto-medullary raphe nuclei are the
most likely candidates to mediate SC modulation of reflex blink-
ing. Our data demonstrate that the serotonergic neurons of the
ponto-medullary nucleus raphe magnus (NRM) link the BG to

Received March 18, 1996; revised July 31, 1996; accepted Aug. 27, 1996.
This work was supported by National Eye Institute Grant EY07391 (C.E.) and

summer fellowships from the Parkinson’s Disease Foundation. We thank Donna
Schmidt for her expert technical assistance.
Correspondence should be addressed to Craig Evinger, Department of Neurobi-

ology and Behavior, SUNY Stony Brook, Stony Brook, NY 11794-5230.
Dr. Basso’s current address: Laboratory of Sensorimotor Research, National Eye

Institute, Building 49, Room 2A50, Bethesda, MD 20892-4435.
Copyright q 1996 Society for Neuroscience 0270-6474/96/167318-13$05.00/0

The Journal of Neuroscience, November 15, 1996, 16(22):7318–7330



the reflex blink circuit through the SC. Microstimulation of the
NRM suppresses reflex blinks ;1 msec faster than does the SC.
Blocking serotonin receptors prevents SC suppression of reflex
blinks. Finally, temporary inactivation of the NRM eliminates SC
suppression of the reflex blinks.

MATERIALS AND METHODS
Subjects. Male Sprague Dawley rats weighing between 150 and 400 gm
served as subjects. Animals were maintained on a 12 hour light/dark cycle
and fed ad libitum. All procedures strictly adhered to federal, state, and
university guidelines concerning the use of animals in research.
Acute preparation. Animals were prepared as described in the compan-

ion paper [Basso et al., 1996 (this issue)]. Briefly, rats were sedated with
xylazine and anesthetized with urethane. A pair of silver ball electrodes
were placed on the cornea to evoke blinks, and electrodes were implanted
into the lateral and medial margins of the orbicularis oculi (OO) muscle
to record its electromyographic activity (OOemg). Corneal stimulation
parameters for each animal were determined by adjusting the intensity
and duration of the electrical pulse to the cornea to evoke a consistent
OOemg response, with an intertrial interval of 50 6 5 sec. The stimula-
tion parameters remained constant for each animal throughout the test-
ing session. In two rats, a nerve cuff was placed around the zygomatic
branch of the facial nerve to activate facial motoneurons antidromically.

Electrical stimulation of this nerve produced twitches of the OO and
upper vibrissal pad.
Microstimulation. Glass microelectrodes filled with 2 M sodium acetate

saturated with fast green were used for stimulation. To activate neural
structures, a 70 msec train of 200 Hz, 80 msec duration stimuli was
delivered 75 msec before corneal stimulation. The stimulus intensities
ranged from 10 to 50 mA. To establish the latency of stimulation effects,
a single 80 msec stimulus was presented 0, 10, 20, or 30 msec after the
corneal stimulus. The stimulus intensities for the single stimuli ranged
from 50 to 120 mA. In all experiments, stimulation and nonstimulation
trials were alternated with an intertrial interval of 50 6 5 sec.
Drug protocols.We examined the effects of muscimol, a GABA agonist,

metergoline, a serotonin blocker, and naloxone, an opioid antagonist, on
SC modulation of reflex blinks. Muscimol (1%) dissolved in saline was
injected into brain structures to decrease neural activity. In one animal,
0.5 ml of muscimol was injected through a 30-gauge syringe into the SC
while recording spinal trigeminal field potentials and OOemg activity
evoked by corneal stimulation. In the other experiments, 50–100 nl of
muscimol was pressure-injected with a Picospritzer (General Valve, Fair-
field, NJ) through one barrel of a double-barrel recording electrode. The
other barrel of the microelectrode contained 2 M sodium acetate satu-
rated with fast green and was used to establish the level of reflex blink
suppression produced by microstimulation. The electrode pair was placed
stereotaxically into the NRM. The electrode position was marked by

Figure 1. Effect of the delay between the onset of the SC stimulation and the occurrence of the corneal stimulus on reflex blink magnitude. A, OOemg
response to a corneal stimulus (Corn) with (bottom trace) and without (top trace) a preceding 40 mA, 70 msec, 200 Hz train of SC stimulation (black bar)
that terminated 5 msec before the corneal stimulus. Each trace is the average of five rectified blinks. B, The diagram illustrates stimulus conditions. The
corneal stimulus (Corn) occurred 100 msec (2100 msec), 80 msec (280 msec), 70 msec (270 msec) after the onset of a 70 msec train of SC stimulation
(SC Stim) or 10 msec (10 msec) before the onset of SC stimulation. C, Effect of SC stimulation on reflex blink magnitude as a function of time between
corneal stimulation and the onset of a 70 msec train of SC stimulation (ç) compared to trials without superior colliculus stimulation (F). All data are
normalized to the mean magnitude of all blinks at all delays without SC stimulation. Each point is the mean of 25 blinks (5 blinks from 5 animals), and
the error bars are SEM.
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passing current through the fast green barrel (Thomas and Wilson, 1965).
To block a broad range of serotonin receptor types, 6 mg/kg metergoline
diluted in 5.0% ascorbic acid was injected subcutaneously (Middlemiss
and Trickleybank, 1992) while recording trigeminal field potentials and
OOemg activity evoked by corneal stimulation. To test opioid mecha-
nisms in reflex blink suppression, 2 mg/kg naloxone diluted in saline was
injected subcutaneously in two animals while measuring the amount of
reflex blink suppression produced by microstimulation of the SC.
Data acquisition and analysis. OOemg signals were acquired and stored

on a computer (4000 Hz, 12-bit A/D resolution) and analyzed off-line
using an interactive computer program that integrated OOemg records
and determined latencies. When acquiring trigeminal field data and
OOemg data simultaneously, both records were acquired and stored on a
computer at 15 kHz per channel (12-bit A/D resolution).
Statistical procedures. OOemg and field data were analyzed separately

for each experimental manipulation. OOemg data were normalized to the
mean blink amplitude for all animals, and nonparametric statistics were
used to compare reflex blink amplitude with and without stimulation
trains. Analyses assessing drug effects compared the amount of reflex
blink suppression with and without SC stimulation before and after the
drug using parametric statistics. To determine the latency of reflex blink
suppression after a single stimulus, five consecutive OOemg responses of
either stimulated or unstimulated trials were collected at 15 kHz and
averaged. We compared the two averaged wave forms by subtracting the
OOemg waveform with a stimulus from the OOemg wave form without a
stimulus. We took the mean and SD of the differences of 3 msec of
baseline data. We defined the suppression evoked by microstimulation as
significant when the difference between the waveforms was 2 SD below

the mean of the differences in the baseline for .30 consecutive points (2
msec). We calculated latency as the time after the stimulus when the
stimulated wave form first showed the 2 SD decrease in magnitude that
lasted at least 30 consecutive points. The 2 msec period ensured that short
random differences between the two wave forms were ignored. After
analysis, the wave forms were smoothed with a 250 Hz low pass filter to
facilitate visual comparison of the records.
Histology. At the end of the experiments, deeply anesthetized animals

were perfused intracardially with a warm solution of 6.0% dextran in 0.1
M phosphate buffer (PB; pH 7.4) and then with cold 10% formalin in 0.1
M PB. The brains were then immersed in a 30% sucrose solution in PB.
The brains were cut into 100 mm frozen sections and stained with cresyl
violet to reconstruct electrode placement sites as marked by fast green
dye injections.

RESULTS
Because suppression of reflex blinks was most effective at deep SC
stimulation sites, in the initial experiments we investigated
whether SC stimulation suppressed reflex blinks by directly acti-
vating periaqueductal grey (PAG) antinociceptive circuits. If blink
suppression involved PAG mechanisms, then the effects of SC
stimulation should be opioid-sensitive and last for periods of
minutes (Levine et al., 1991). Stimulation of the cornea in five
anesthetized rats evoked a single-component burst of OOemg
activity that could be suppressed by a 70-msec-duration train of

Figure 2. Suppression of reflex blinks by NRM microstimulation. A, Orbicularis oculi response to a corneal stimulus (Corn) with (solid line) and without
(dotted line) a preceding 70 msec, 200 Hz, 15 mA stimulus train to the nucleus raphe magnus (Raphe Stim) that ended 5 msec before the corneal stimulus.
Each trace is the average of five rectified responses. B, Group data from four animals (at least 5 blinks per condition per animal) illustrating OOemg
magnitude with preceding NRM microstimulation (solid bar, Stim) relative to OOemg blink magnitude without NRM stimulation (hatched bar, Con).
Error bars are SEM.
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low-intensity SC stimulation that ended 5 msec before the corneal
stimulus (Fig. 1A). The magnitude of SC suppression was very
sensitive to the timing of the SC stimulus train relative to the
corneal stimulus. Starting the SC stimulus train 10 msec after the
corneal stimulus, which was just before OOemg activity should
normally begin, resulted in the largest suppression (Fig. 1C; 10
msec). As the onset of the stimulus train moved ahead in time

relative to the corneal stimulus (Fig. 1B), the amount of SC
induced suppression declined (Fig. 1C). In contrast to the up to 45
min period of analgesia produced by PAG stimulation (Levine et
al., 1991), an SC stimulus train had no significant effect on reflex
blinks evoked 60 msec after the termination of the stimulus train
(Fig. 1C; 2130 msec). Also consistent with the lack of PAG
involvement in SC suppression of reflex blinks, a systemic injec-
tion of naloxone at concentrations sufficient to block PAG anti-
nociceptive activity (Cazala and David, 1991; Kamei et al., 1992)
failed to alter the ability of SC stimulation to suppress reflex
blinks in two animals (t(3) 5 1.7, not significant). Thus, although
stimulation sites for producing reflex blink suppression were in
the deep layers of the SC (Basso et al., 1996), this effect did not
involve activation of PAG antinociceptive centers.
Microstimulation of almost all brainstem areas receiving SC

afferents suppressed trigeminal reflex blinks. For example, stim-
ulation of the NRM with current intensities as low as 15 mA
readily suppressed reflex blinks (Fig. 2A). Seventy millisecond
trains of stimuli significantly suppressed OOemg activity in all
four rats tested (Fig. 2B; Kruskal–Wallis 5 6.05, p , 0.01). The
trigeminal reflex blink suppression produced by brainstem micro-
stimulation could have occurred because the electrical stimulus

Figure 3. A single stimulus to the superior colliculus or the nucleus raphe magnus transiently decreases reflex blink amplitude. A, Unfiltered OOemg
response to corneal stimulation with (solid line, SC Stim) and without (dotted line, Unstim) a single 80 msec pulse to the superior colliculus (SC Stim, dashed
vertical line). Traces are unfiltered (top traces) or filtered (bottom traces) at 250 Hz to facilitate comparison of the stimulated and unstimulated records.
Each trace is the average of five rectified OOemg responses. B, A single stimulus of the nucleus raphe magnus transiently decreases blink amplitude at
a shorter latency than SC stimulation. OOemg response to corneal stimulation with (solid line, NRM Stim) and without (dotted line, Unstim) a single 80
msec pulse to the nucleus raphe magnus (NRM Stim, dashed vertical line). Traces are unfiltered (top traces) or filtered (bottom traces) at 250 Hz to facilitate
comparison of the stimulated and unstimulated records. Each trace is the average of five rectified OOemg responses.

Table 1. Latency of decrease in OOemg

Latency from
OOemg onset (msec)

Superior
colliculus stim

Nucleus raphe
magnus stim

13 4.1
18 5.9
12.7 3.5
26.2 4
16.8 5.75
15.8 5

Latency of the decrease in OOemg magnitude after a single stimulus to the superior
colliculus (Superior colliculus stim) or the nucleus raphe magnus (Nucleus raphe
magnus stim) as a function of the time after the onset of corneally evoked OOemg
activity that the stimulus occurs (Latency from OOemg onset) in msec.

Basso and Evinger • Raphe Magnus Modulation of Reflex Blinks J. Neurosci., November 15, 1996, 16(22):7318–7330 7321



activated fibers of passage from the SC or because several inde-
pendent pools of neurons linked the SC to trigeminal reflex blink
circuits. As an initial step to establish a causal linkage, we deter-
mined the latency of OOemg suppression after a single stimulus to
the SC and repeated this procedure in candidate brainstem
structures.
At SC sites where trains of low-intensity, SC stimulation in-

duced reflex blink suppression, a single pulse presented to the SC
of five animals during a corneal-evoked reflex blink transiently
suppressed OOemg activity (Fig. 3A). As suggested by the time
course experiment (Fig. 1), the SC stimulation was more effective
and reliable when it occurred during the OOemg response. Be-
cause the latency of the OOemg response to corneal stimulation
varied between animals, the data from only two of these animals
could be used to determine a reliable latency measure. When
there was sufficient OOemg activity before the onset of the single
SC pulse (i.e., at least 10 msec), the mean latency to the transient
OOemg suppression was 5.4 msec (Fig. 3, Table 1).
If a brainstem area links the SC to the trigeminal reflex blink

circuits, stimulating that brainstem nucleus should produce sup-
pression at a shorter latency than SC stimulation at all delays. We
tested the nucleus pontis caudalis (NPc), the nucleus paragigan-

tocellularis (PGi), the NRM, and the nucleus supragenualis ros-
tral to the prepositus hypoglossi nucleus (S.Genu/PH). Trains of
low-intensity stimuli presented to all of these brainstem areas
suppressed reflex blinking. The NRM, however, was the only
structure in which stimulation transiently suppressed OOemg with
a latency shorter than SC stimulation in all four animals tested
(Fig. 3B, Table 1). Other neural structures that also transiently
suppressed OOemg activity with single-pulse stimulation did so at
latencies that were much longer and more variable than those
obtained with NRM stimulation. Single-pulse stimuli delivered to
NRM also produced deeper suppression than the other struc-
tures. The mean 4.4 msec latency suppression of OOemg activity
with NRM stimulation in four animals is consistent with a single
synapse intervening between the SC and the NRM.
Reflex blink suppression caused by SC stimulation could occur

at any one of the three neurons of the corneal reflex blink circuit:
(1) Ad primary afferents; (2) spinal trigeminal second-order neu-
rons; or (3) OO motoneurons. Previous work showed that stimu-
lation of the NRM exerted its suppressive effects on trigeminal
neuron responsiveness (Dostrovsky, 1980). If the SC suppressed
reflex blinks through the NRM, then SC stimulation should not
inhibit OO motoneuron activity but, rather, should reduce spinal

Figure 4. Effect of trains of SC microstimulation on facial nucleus antidromic field potentials. A, OOemg response to corneal stimulation at the intensity
used to assess OO motoneuron excitability with (solid line) and without (dashed line) preceding, 70 msec train of SC stimulation. B, Antidromic field
potential from the OO subdivision of the facial nucleus evoked by stimulation of the zygomatic branch of the facial nerve with (solid line) and without
(dashed line) preceding SC stimulation. Each trace is the average of 10 responses.
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Figure 5. Effect of a train of SC stimulation on simultaneously recorded OOemg activity and trigeminal field potentials evoked by a corneal stimulus
(s Corn). Top traces are superimposed orbicularis oculi emg (OOemg) responses, and bottom traces are superimposed trigeminal field potentials (V Field ).
Solid lines show trials with a preceding, 70 msec train of SC stimulation (SC Stim) that terminated 5 msec before the corneal stimulus. Dotted lines show
records from unstimulated trails (Control ). Each trace is an average of 10 responses.
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Figure 6. Effect of a microinjection of muscimol into the SC stimulation on simultaneously recorded OOemg activity and trigeminal field potentials
evoked by a corneal stimulus (a Corn). Top traces are superimposed orbicularis oculi emg (OOemg) responses, and bottom traces are superimposed
trigeminal field potentials (V Field). Solid lines show trials after a 0.5 ml injection of 1.0% muscimol into the contralateral SC (Post Muscimol ). Dotted
lines show records collected before the muscimol injection (Pre Muscimol ). Each trace is an average of 12 responses.
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trigeminal activity. We tested whether the SC acted at the efferent
limb of the corneal blink reflex by determining whether SC stim-
ulation reduced the antidromic field potential of OO motoneu-
rons. Antidromic fields recorded from OO motoneuron pools
showed no significant change with SC stimulation (Fig. 4B) that
substantially suppressed the reflex blinks (Fig. 4A). As expected
from previous studies (Vidal et al., 1988; May et al., 1990),
however, antidromic fields produced by vibrissal motoneurons
showed a decrease in amplitude with SC stimulation (data not
shown).
Unlike the case with OO motoneurons, SC stimulation de-

creased the activity of the trigeminal nucleus as well as OOemg
magnitude (Fig. 5). Primary afferent fibers innervating the rat
cornea arise from the ophthalmic division of the trigeminal nerve
and terminate within the trigeminal nucleus at the border between
the rostral caudalis subdivision and the caudal interpolaris subdi-
vision (Marfurt and Del Toro, 1987). Because neurons in this
region project to OO motoneurons (Pellegrini et al., 1995),
changes in the neuronal activity in this region can significantly
influence corneal evoked reflex blinks. The latency of the field in
the spinal trigeminal nucleus produced by a corneal stimulus was
5.11 6 0.422 msec (10 responses for each of 6 animals) and
preceded OOemg activity. Presenting trains of low-intensity stim-
uli to the SC reduced the magnitude of the spinal trigeminal field

and concomitantly suppressed the OOemg activity in 10 of the 11
animals tested. The mean difference in the field potential ampli-
tude with and without SC stimulation was 0.187 mV (sign test: p,
0.05). Between animals, the amount of trigeminal field suppres-
sion produced by SC stimulation varied between 5 and 88%, and
the amount of blink suppression varied between 5 and 94%.
Consistent with the SC activation suppressing the afferent limb of
the reflex, inhibiting SC activity with a 0.5 ml (1.0%) muscimol
injection into the SC increased the size of the trigeminal field and
blink amplitude (Fig. 6) (Basso et al., 1996).
Stimulation of the NRM causes the release of serotonin in the

trigeminal nucleus (Shibutani, 1990). If the SC excited the NRM
to suppress reflex blinking, then blocking serotonin receptors
should prevent SC stimulation from suppressing reflex blinks. The
ability of SC stimulation to reduce trigeminal field potentials
evoked by corneal stimulation and reflex blinks was examined
before and after a systemic injection of 6 mg/kg metergoline, a
serotonin receptor blocker (Fig. 7) (Middlemiss and Trickley-
bank, 1992). Blocking serotonin receptors prevented SC stimula-
tion from decreasing the trigeminal field potential and subsequent
OOemg activity. The median decrease in corneally evoked trigem-
inal field amplitude caused by SC stimulation was 10%. Systemic
injection of 6 mg/kg metergoline in four animals reduced the
efficacy of SC stimulation on the trigeminal field by 46%. Simi-

Figure 7. Systemic metergoline injections block SC suppression of orbicularis oculi (OOemg) and trigeminal field potentials (V Field) evoked by corneal
stimulation (Stim). Simultaneously recorded OOemg (top traces) and trigeminal field responses (bottom traces) to a corneal stimulus with (solid line, SC
Stim) and without (dotted line, Control) a preceding, 70 msec SC stimulation that terminated 5 msec before the corneal stimulus before (left records) and
after (right records) a 6 mg/kg injection of metergoline. Each trace is an average of 10 rectified responses.
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larly, blocking serotonin receptors reduced SC suppression of
trigeminal reflex blinks by 73% (t(3) 5 24.03, p , 0.05). The
difference in suppression of the trigeminal field and the OOemg
suggested that the electrodes in the spinal trigeminal nucleus were
not always optimally placed to record corneally evoked trigeminal
field potentials (Fig. 8). Systemic injection of the vehicle ascorbic
acid in two animals had no effect on the SC induced trigeminal
field suppression or reflex blink suppression (t(1) 5 21.20, not
significant).
The ability of SC stimulation to suppress reflex blinking was

examined before and after reversible inactivation of the NRM
with microinjections of muscimol in eight animals (Fig. 9; 1 animal
0.5 ml; 7 animals 50–100 nl; 1.0%). At sites where trains of NRM
stimulation suppressed reflex blinking (6 rats), a microinjection of
muscimol significantly reduced the ability of SC stimulation to
suppress blinking (Fig. 9B; t(5) 5 22.65, p , 0.05). The average
reduction in reflex blink amplitude produced by SC stimulation
was 72%. After inactivation of the NRM, however, the average
reflex blink suppression produced by SC stimulation was only 33%
(Fig. 9B). Histological analysis revealed all electrode placements
that altered SC stimulation-induced suppression of reflex blinks
were within the NRM (Fig. 10). Two animals survived long
enough to recover from the NRM inactivation. In these rats,
suppression of reflex blinks by SC stimulation returned to normal
within 90 to 120 min. In the two animals with no measurable effect
of muscimol injection, histological analysis revealed that the elec-
trodes were located outside of the NRM (Fig. 10).

DISCUSSION
Changes in the level of SC activity dramatically modify reflex blink
magnitude. Inhibition of the SC produced marked reflex blink
hyperexcitability, whereas activating the SC reduced trigeminal
reflex blink amplitude (Basso et al., 1996). These data support the
hypothesis that the SC modulates tonically active neurons that
inhibit the reflex blink circuit. The present results demonstrate
that the NRM links the SC to trigeminal reflex blink circuits. That
these neurons could fulfill this role is supported further by ana-
tomical evidence demonstrating a projection from the SC to the
NRM (Carlton et al., 1983) and physiological evidence demon-
strating that serotonergic NRM neurons are tonically active (For-
nal et al., 1985) and that NRM neurons excited by SC stimulation
are tonically active (our unpublished observations). Not all sero-
tonergic cells within the NRM are nociceptive-specific (Fornal et
al., 1985), and not all serotonergic effects are opioid-sensitive
(Satoh et al., 1980; Gebhardt et al., 1983a,b). The present results
are consistent with these data because they demonstrate that the
effects of SC stimulation do not result from directly or indirectly
activating descending antinociceptive mechanisms originating in
the PAG. The duration of SC-induced reflex blink suppression is
much shorter than the stimulus-induced analgesia that results
from PAG stimulation (Levine et al., 1991), and reflex blink
suppression by SC stimulation is unaffected by an opioid antago-
nist, nalaxone.
The SC could suppress the corneal blink reflex by inhibiting the

primary afferents, the trigeminal or reticular interneurons, or the

Figure 8. Schematic coronal hemisections through the trigeminal nucleus of the rat brain (Swanson, 1992) illustrating the site of trigeminal field potential
recordings. Values indicate distance (in mm) from bregma. Black dots show the location of trigeminal field potential recording sites. Black squares are
sites where data for Figures 5 and 6 were collected. IO, Inferior olive; LRN, lateral reticular nucleus; spVc, spinal trigeminal nucleus caudalis subdivision;
spVi, spinal trigeminal nucleus interpolaris subdivision; XII, hypoglossal nucleus.
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Figure 9. Effect of microinjections of muscimol into the nucleus raphe magnus on suppression of corneal evoked blinks by SC stimulation. A, OOemg
responses to corneal stimulation with (dashed lines) and without (solid lines) a preceding, 70 msec train of SC stimulation that terminated 5 msec before
a corneal stimulus (a Corn) before (top trace, Pre Muscimol ), 20 min after (middle traces, 20 min Post), and 90 min after (bottom traces, 90 min Post) a
50 nl injection of 1.0% muscimol into the NRM. Each trace is the mean of 10 responses. B, Group data showing the magnitude of blink reflex suppression
with SC stimulation before (hatched bar, Pre), after (black bar, Post), and after recovery (striped bar, Recov) from a microinjection of muscimol into the
NRM. In the pre and post condition, the bars show the averages of at least 60 blinks, 10 from each of 6 animals. In the recovery condition, the bars show
averages of at least 20 blinks, 10 from each of two of these 6 animals. Error bars are SEM.
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OO motoneurons that form the minimal corneal reflex blink
circuit. Two lines of evidence argue against the SC acting to
inhibit OO motoneuron activity. First, SC stimulation did not
reliably alter the excitability of OO motoneurons (Fig. 4). Second,
the facial motoneurons that receive disynaptic inhibition from SC
stimulation tend to innervate auricular muscles (Vidal et al., 1988;
May et al., 1990). The evidence supporting the hypothesis that SC
stimulation reduces the activity of second-order trigeminal neu-
rons in response to corneal stimulation is compelling. SC stimu-
lation consistently decreases second-order trigeminal fields
evoked by corneal stimulation (Fig. 5). This decrease could have
resulted from primary afferent depolarization (PAD) of trigemi-
nal afferent terminals or direct inhibition of second-order trigem-
inal neurons. There are numerous studies demonstrating PAD in
the trigeminal system (Nakumura and Wu, 1970; Goldberg, 1972;
Goldberg and Browne, 1974; Yu and Avery, 1974; Browne and
Goldberg, 1978). Previous studies also show that the proposed
link between the SC and reflex blinks circuits, the NRM, reduces
trigeminal neuron responsiveness to primary afferents
(Dostrovsky, 1980).
The current experiments provide strong evidence that the NRM

links the SC to the blink circuit. Stimulation of the SC suppresses
OOemg activity in 5.4 msec, whereas microstimulation of the
NRM suppresses OOemg activity in 4.4 msec. The 1 msec latency
difference is consistent with a monosynaptic projection from the
SC to the NRM. Because the contralateral descending collicular

efferent system originating in the rostral and lateral SC projects to
the pontine and medullary raphe nuclei (rat: Redgrave et al.,
1987; cat: Kawamura et al., 1974), and specifically to the NRM
(Carlton et al., 1983), anatomical evidence supports this physio-
logical result. Blocking serotonin receptors prevents the SC from
suppressing reflex blinks. This is consistent with NRM linking SC
and blink circuits because NRM projections to the trigeminal
complex are serotonergic and NRM stimulation releases seroto-
nin in the trigeminal complex (Shibutani, 1990) (for review, see
Jacobs and Azmitia, 1992). Moreover, NRM stimulation sup-
presses corneal-related neurons in the trigeminal nucleus (Lovick
andWolstencroft, 1979). Thus, serotonin antagonists should block
the effect of SC suppression of blink reflexes if the NRMmediates
the effect. Finally, temporarily inactivating NRM with muscimol
blocked the effect of SC stimulation on the blink reflex (Fig. 9).
The present results suggest that reflex blink amplitude corre-

lates inversely with NRM activity and serotonin release in the
trigeminal nucleus. The modulation of reflex blink excitability
during REM sleep supports this idea. For example, NRM neurons
exhibit a decrease to a near cessation of their spontaneous tonic
activity during REM sleep (Auerbach et al., 1985; Jacobs and
Azmitia, 1992), which should increase reflex blink amplitude. As
predicted, the long-latency, R2 component of the supraorbitally
evoked reflex blink in humans increases in duration during REM
sleep relative to blinks evoked when the subjects are awake
(Kimura and Harada, 1972). The role of serotonergic neurons in

Figure 10. Location of muscimol injections in the nucleus raphe magnus experiments. Black squares show injection sites that reduced SC suppression of
trigeminal reflex blinks within 10 min. Filled circles show injection sites where reduction of SC blink suppression occurred between 30 and 45 min after
the injection. The open circles identify ineffective injection sites. gVII, Genu of the facial nerve; NPc, nucleus pontis caudalis; NRM, nucleus raphe magnus.
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the NRM as well as other raphe nuclei typically involves both a
motor facilitation and a sensory suppression. Jacobs and Fornal
(1992) hypothesize that the suppression of sensory information
occurs as a result of the activation of serotonergic cells involved in
motor behavior. Consistent with this, voluntary arm movements
can suppress reflex blinks (Sanes, 1984).

An explanation of reflex blink hyperexcitability in
Parkinson’s disease
The present experiments combined with those of the previous
study (Basso et al., 1996) argue that the basal ganglia can regulate
reflex blink excitability by altering the inhibitory drive from the
SNr to the SC. In turn, the level of SC activation modulates the
activity of NRM neurons that tonically inhibit spinal trigeminal
nucleus responsiveness, the afferent limb of the reflex blink (Fig.
11). The dopamine depletion of Parkinson’s disease leads to an
increase in SNr activity. This increased inhibitory output de-
creases the activity of lateral and rostral SC neurons. The loss of
the SC excitatory drive on continuously active NRM neurons
removes some of the tonic inhibition of trigeminal neuronal
responsiveness, which leads to reflex blink hyperexcitability. Con-
versely, Huntington’s disease, which causes a decrease in SNr
inhibition of the SC, leads to reflex blink hypoexcitability. Thus,
the tonic level of BG output modulates trigeminal reflex blink
excitability.
It is possible that, in addition to modulating tonic reflex blink

magnitude, the BG modifies reflex amplitude phasically. McHaffie
et al. (1989) suggested that noxious facial stimuli transiently
increase the output of the BG, which suppresses orienting behav-
ior to allow unopposed withdrawal or defensive behaviors. In
addition to suppressing orienting behavior, the current data show
that the increased BG output increases the sensitivity of cutane-
ous reflexes to enhance the protective function of trigeminal reflex
blinks.
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