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Immobile and mobile calcium buffers shape the calcium signal
close to a channel by reducing and localizing the transient
calcium increase to physiological compartments. In this paper,
we focus on the impact of mobile buffers in shaping steady-
state calcium gradients in the vicinity of an open channel, i.e.
within its “calcium microdomain.” We present a linear approx-
imation of the combined reaction—diffusion problem, which can
be solved explicitly and accounts for an arbitrary number of
calcium buffers, either endogenous or added exogenously. It is
valid for small saturation levels of the present buffers and shows
that within a few hundred nanometers from the channel, stand-
ing calcium gradients develop in hundreds of microseconds
after channel opening. It is shown that every buffer can be

assigned a uniquely defined length-constant as a measure of its
capability to buffer calcium close to the channel. The length-
constant clarifies intuitively the significance of buffer binding
and unbinding kinetics for understanding local calcium signals.
Hence, we examine the parameters shaping these steady-state
gradients. The model can be used to check the expected
influence of single channel calcium microdomains on physio-
logical processes such as excitation—secretion coupling or ex-
citation—contraction coupling and to explore the differential ef-
fect of kinetic buffer parameters on the shape of these
microdomains.
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Calcium is involved in a multitude of fast intracellular signal
transduction mechanisms ranging from excitation—contraction
coupling to synaptic transmission (Augustine et al., 1985; Cheng
et al., 1993; Bruns and Jahn, 1995; Clapham, 1995). To achieve a
high bandwidth of signal transmission at specific sites, the cell
needs to localize the calcium signals in time and space. Mobile
calcium buffers are elegant tools to achieve this temporal and
spatial functional compartmentalization (Roberts, 1994): mobile
calcium buffers act as calcium shuttles or sinks to produce steep
gradients in a close neighborhood of channels. In these “calcium
microdomains,” [Ca?"] readily reaches many tens of micromolar
levels to activate low-affinity processes. Complementary to this,
the microdomains dissipate very rapidly by virtue of the mobili-
ties of the buffers.

Recent experimental studies (Eilers et al., 1995; Yuste and
Denk, 1995) have used imaging techniques to observe the temporal
and spatial dynamics of [Ca®"] in different cell types. Unfortu-
nately, currently available imaging technology does not simulta-
neously provide a sufficiently high resolution in time and space.
Temporal resolution is sacrificed to get a decent spatial resolution,
or vice versa. This dilemma, in concert with the insight that “Ca>"
signaling takes the local route” (Augustine and Neher, 1992b), has
in turn triggered a huge body of simulation studies that attempt to
calculate the expected time course of calcium concentration in-
creases and their spatial extent (Simon and Llinas, 1985; Stern,
1992; Nowycky and Pinter, 1993; Roberts, 1994; Klingauf and
Neher, 1997) in the presence of multiple buffers.
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From these simulations, we have learned about the impact of
cellular buffers on calcium signaling, but each simulation rep-
resents only one point in a multidimensional parameter space.
Nevertheless, it would be helpful if we could make a compro-
mise between the computational and the analytical complexity
of the buffered diffusion problem. One approach is to linearize
the corresponding differential equations. It was first done for
one mobile buffer (Neher, 1986), which was assumed not to
change its concentration by binding to calcium, a reasonable
approximation if a high concentration of a mobile chelator is
present. Later, Stern (1992) considered a channel as a point
source in an isotropic medium and approximated the steady-
state calcium concentration profiles surrounding the source in
terms of nonlinear integral representations. More recently,
Pape et al. (1995) calculated the concentration profiles of Ca®*
and a mobile buffer for “small saturation levels” of the buffer.
Within the limit of no spatial gradients of the mobile buffer (by
virtue of its high concentration), they achieved the results of
Neher (1986) and Stern (1992).

In the present paper, we extend this approach to an arbitrary
number of mobile buffers. We derive analytical solutions for
the steady-state profiles of calcium and calcium-bound buffers
surrounding a channel as a point source. It is shown that in the
range of tens of nanometers, the effectiveness of buffered
solutions depends strongly on chemical kinetics and diffusional
mobility of the buffers. The results are used to discuss relative
effects of BAPTA and EGTA (Borst and Sakmann, 1996) in
blocking synaptic transmission.

MATHEMATICAL MODEL

We will be considering the concentration profiles of calcium and
calcium-bound buffers around a single calcium channel. In par-
ticular, as we will see in the sequel we can focus on steady-state
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gradients because the concentration profiles stabilize rapidly in
the vicinity of a channel after its opening. Thus, the first step is to
show why we can only consider mobile buffers to be present in the
course of our analysis.

1. Immobile buffers do not affect the standing calcium gradients
around an open calcium channel. Let us consider the interaction
of calcium ions with N different buffer species (which we shall
denote by B, B,, ..., By) in a reaction cell according to the
kinetic scheme:

k;
Ca’ +B== CaB,, i=1,...,N. (1)

—i

The parameters k; and k_; are the kinetic rate constants of this
reaction in units of 1/(M.sec) and 1/sec, respectively. Further-
more, we denote by K; the dissociation constant of the i-th buffer
(under the specific pH and temperature conditions) given by K; =
k_i/k;. If there are no sources or sinks for the buffers B; (which we
assume to be the case here), the notion of the total concentration
of the i-th species in the reaction volume is a well defined
conserved quantity, i.e.: [B;]; = [B;] + [CaB;]. For the sake of
simplicity, we shall further make use of the following abbrevia-
tions in the rest of this paper: y; = [CaB;], yv+, = [Ca®"], x; =
[Bi,i=1,...,N.

Taking into account the diffusive mobility of all molecules, say
in an isotropic reaction medium, we need to introduce the diffu-
sion coefficients of calcium ions, Dy, = D¢,, as well as that of
the free form of B;, Dy, and of its calcium-bound form, D¢ ,p.
The spatiotemporal evolution of the concentrations is then incor-
porated into a system of partial differential equations given by:

ay;
37)2 =ki*yni1Xi — k_i*yi + DcagAyi
a}’N 1
== —E{k Yne1Xi — ki yit + DAy (2)
i=1
Bxi
o —{ki yne1xi — kv yi} + DgAx;,

where A is the Laplace operator. Assuming that Dy = Dc,p, =
D;, we can add the first and last equation of the system (2) to get

the following equation for the new variable z; = x; + y;:
% _pa 3
Y Zis (3)

which is the standard diffusion equation for the total i-th buffer. If
the buffer is homogenously distributed in the cell at time zero, i.e.
z;(t = 0, 7) = [B;] for all space coordinates 7, the unique solution
to Equation 3 is just the constant z;(f, 7) = [B;]. This means that
the total buffer remains spatially constant in the sample if this was
the case at time zero. Assuming this in the following, we can now
simplify Equation 2 to get the following system:

9yi
ot

=ki*yn+1 ([Bilr —y) — k_i*yi + DgAy;
(4)

a)’N+1

:—E{k vt ([(Bile = yi) =

i=1

k_i*y} + DcaAynst,
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describing the dynamics of concentration changes attributable to
diffusion and reaction in three dimensions. Several studies have
investigated the temporal evolution of this system for specified
geometries, initial and boundary conditions with or without sim-
plifications. The objective often was to calculate the concentra-
tion of free calcium at locations that are not experimentally
accessible because of resolution limitations of the currently avail-
able imaging technology, e.g. the calcium concentration within a
few tens of nanometers from the cytosolic mouth of a calcium
channel.

Let us now assume that the first M < N buffer species are
mobile and the last N-M are immobile, i.e., have vanishing
diffusion coefficients: D; = 0 um?/sec fori=M + 1,..., N. In
steady-state, all of the time derivatives in Equation 4 are zero,

givingrise to 0 = k;*ynq * ([Bilr — ;) —k_iyi, i =M+ 1,...,
N, which reduces Equation 4 to:
ayi
a
=ki*yner* ([Bilr —y) — k-i*yi + DAy,
i=1,...,M, (%)
Yn+1
P

M
= _E{ki Yner ([Bilr —y) —

i=1

k_i*yi} + DcaAyyy-

Equation 5, however, is exactly the system one has if there were
only the first M buffers, i.e., the mobile buffers, present in the cell.
The conclusion is in studying the steady-state concentrations, all
the fixed buffers can be neglected because they do not influence
these concentration profiles (Stern, 1992). The effect of the im-
mobile buffers is to prolong the time needed to reach steady-state,
but once this is achieved, the standing gradients are completely
identical to those one would see if there were no fixed buffers
present at all. The reason for this is simply the fact that the fixed
buffers cannot be replenished by means of diffusion and, hence,
get saturated. Because of this, without loss of generality, we may
assume that only mobile buffers are present whenever we look at
steady-state profiles.

II. The reaction—diffusion system can be linearized if the
“buffer saturations,” i.e., the increase in the concentrations of
calcium-bound buffers on channel opening, are small. Let us
now come back to the general system (Eq. 4) to establish the
conditions under which a linearization can be carried out. The
reaction—diffusion system is nonlinear because of the products
of the concentrations according to the law of mass action. If we
denote the resting concentrations by y = (¥, ..., ¥n1)’ any
deviations from the resting concentrations, say by virtue of
calcium injection through an open channel, can be written as:
yi=y; t&;,i=1,...,N,ie,y = 8 + y, which suggests
linearization of Equation 4 around y. We can write Equation 4
as a vector field equation:

Dl 0 * 0
y=fm+| . . g |tA=fO)+D Ay, (6)
0 . 0 Dy
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where the reaction vector field f(y) incorporates all the nonlin-
earity and is given by:

ki*yners ([Bilr —y1) —k_i+y:

fy) = ky Yy ([Bylr —yn) — k-nyn

N
_E(ki YN+t ([Bi]T _)’i) —k_; ')’i)

i=1

D is just the diagonal matrix of the diffusion coefficients:

D, 0 - 0
B 0o - . .
D=l . . py o
0 - 0 Dyu

The concentration increases (above resting values) of the
calcium-bound buffers, so-called “buffer saturations,” are maxi-
mal in steady-state, at any point in space. Hence, if they are small
in steady-state, they can only be smaller during the transient
evolution of the gradients. For small saturations, we can approx-
imate the nonlinear contribution of the reactions to the evolution
of the gradients with linear expressions. This is exactly like
approximating an exponential function of time, say with a time
constant 7, with a linear function. Such an approximation will be
quite good if we confine ourselves to a time window of length T.
The linear function must be chosen to have the same slope as the
slope of the exponential at the point where the two curves
overlap. Hence, we need to compute the derivative of the reaction
term f(y) in the system (Eq. 6), which is accomplished by standard
Taylor series expansion of f. As a result, the nonlinear term f(y)
in (Eq. 6) is substituted by a linear matrix product A4 - dy giving:

y=8=A-8y +D-Ady, (7)

which is a simple linear matrix partial differential equation. A4 is
here the matrix of partial derivatives of f evaluated at the resting
point y, given by:

-1
T1 T
—1
o —~ o - o =
T2 T2
-1 K3
0 0 — - 0 =
A=l e
-1
o o - o0 -
™~ ™~
11 1 1 Mok
T om T w

i=1

with 7, = 1/(k_; + k;[Ca*"]) being the reaction time constant for
binding of calcium to the buffer B; (Bernasconi, 1976) and «; the
“binding ratio” of B; defined as k; = (9[CaB;]/9[Ca**]) = ([B;] -
K,/([Ca*"] + K;)?) (Zhou and Neher, 1993). But what conclu-
sions can we draw from the linearized system (Eq. 7)?

III. The steady-state solution to the linearized reaction—diffusion
problem is determined purely by three factors: the mean reaction
times of the buffers with calcium (7;), the buffering power of each

J. Neurosci., September 15, 1997, 717(18):6961-6973 6963

buffer species (k;), and the mobility of the buffers (D,;). The
solution is given by a sum of exponentials divided by the distance
from the channel. Every buffer can be assigned a characteristic
length-constant, which is indicative of its kinetically limited buff-
ering capability close to the channel. The structure of the system
(Eq. 7) and the matrix 4 already show the determinants of the
linearized problem, the diffusive mobility of the buffers, and their
binding kinetics. If a buffer is very mobile, i.e., has a very high
diffusion coefficient, then only its kinetics should govern its influ-
ence on the calcium signal. The more buffer one has, the higher
the chance of a calcium ion to be bound by the buffer and thus the
shorter the mean time that elapses until a calcium ion is captured
by a buffer molecule. This intuitive notion is expressed in the
ratio k;/7. The binding ratio «; is a measure of the capacity of a
buffer to bind calcium at a given concentration [Ca®*]. For
instance, k = 100 means that ~1% of a given calcium load will
appear as free calcium and 99% will be bound by the buffer. ;/;
can easily be shown to be equal to [B;] - ;, a quantity that we refer
to as the “buffer product” and is the reciprocal mean time re-
quired for a calcium ion to be bound by B;.

Before proceeding with these lines of thought, however, let us
outline how the system (Eq. 7) can be solved to get analytical
solutions. Because we are interested in the concentration profiles
within a very small area, i.e., within the microdomain of a chan-
nel, we can consider the channel mouth to be embedded in a
hemisphere and in doing so reduce the 3-D problem to a 1-D
radial diffusion problem. Transformation of the system (Eq. 7) to
spherical coordinates gives us:

: 92 29
SyZA'Sy‘FD'(WSy‘F;aSy), (9)
where r now represents the distance from the channel mouth.

Finally, bringing our calcium source, i.e., the open channel, into
play, we put it at the origin given by » = 0 and assume that it has
a constant flux ® (in mol/sec) of calcium ions and represents no
sources or sinks for other buffers. Appendix II outlines the deri-
vation of the transient solution to the system (Eq. 9) as a function
of time after channel opening and distance from channel. There,
we also demonstrate numerically that the transient solution rap-
idly approaches steady-state within a few hundred nanometers
from the channel. For this reason, we will focus only on the
steady-state gradients in the following sections.

Within the microdomain of the channel, calcium is carried
either as calcium-bound form of one of the buffers or in its ionic
free form, and the total flux of calcium at each distance r from the
origin must be constant and equal to ® at steady-state. Thus, we
have the following calcium flux conservation constraint:

N+1 d
® = —4m’D; by, (10)

i=1

where each term in the sum is just the contribution of each
calcium-carrying species to the total calcium flux ®. So, we need
to solve (Eq. 9) in steady-state subject to the constraint given by
Equation 10. This is outlined in Appendix I. The main conclusion
that can be drawn is that the gradients around the channel can be
described as a sum of exponentials multiplied by 1/r according to:

N+1

1
oy(r) =+ 2, ae N, (11)
i=1
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The vectors u; as well as the length-constants of the exponentials,
1/V w;, are determined by the matrices A and D, hence by buffer
kinetics ;, buffer binding power «;, and buffer diffusivity D;. Our
objective in the next sections will be to investigate the behavior of
this solution under different conditions and for different distances
from the channel.

IV. For distances from the channel that are big compared with
the length-constants, i.e., if the mean diffusion time for cal-
cium is much bigger than the mean reaction times of the
buffers, the steady-state concentrations are determined purely
by equilibrium buffer properties, namely the binding ratios
(k;) and the diffusion coefficients (D;). A calcium ion, in the
absence of any buffers, will on average need a time ¢ to diffuse
a distance r from the channel, which is proportional to r%/D.,,
i.e., t « r?/Dc,. Hence, as one moves away from the channel,
the mean diffusion time eventually gets much bigger than the
mean buffer reaction times 7,. For such distances, one would
expect that the buffers would be in chemical equilibrium with
local calcium. As a consequence, the binding kinetics of a
buffer should not affect the concentration profiles but its cal-
cium affinity and concentrations should.

To see that our solution (Eq. 11) confirms this prediction, we
evaluate it for long distances, i.e., for N, = 1,i = 1,..., N.
Then, the first N terms in Equation 11 vanish, and 6y is approx-
imately given by &y ~ (1/r)ay ., Uy, . Equation 10 finally results
in an expression for a,, ; as (see Appendix I for the definition
of uyy):

@ .
anvy1 = N » 1.E.,
477(2 kD + Dy.1)
i1
(12)
o
dy =~ (ky Ky ky 1)

N
4a(D) kiD; + D)

i=1

This confirms our intuition that the concentrations are de-
termined merely by equilibrium properties if we are at dis-
tances that are bigger than the length-constants. In particular,
8[Ca?"] =~ [®/4mr(ZN_, k;D; + D¢, )]. Thus, the increase in the
concentration of free calcium scales linearly with the single
channel current ® and falls according to a 1/r-law with an
apparent calcium diffusion coefficient given by D,,, = =Y,
kiD; + Dc¢,.

V. For distances from the channel that are short compared with
the length-constants, i.e., if the mean diffusion time for calcium is
much shorter than the mean reaction times of the buffers, the
calcium concentration behaves like in the unbuffered scenario.
We have just demonstrated that buffer kinetics is insignificant far
away from the channel. We shall now proceed to show that very
close to the channel, no buffer is capable of shaping the calcium
concentration profile because of its finite reaction time. In Ap-
pendix I, we calculate the increase in the concentration of free
calcium, §[Ca?"], as the difference between the expected calcium
increase in the absence of any buffers (®/4mrD, ., ;) and the scaled
sum of the concentrations of calcium-bound buffers above rest
(ZY, D;/Dy ., 8[CaBy]). Approaching the channel, the first term
grows with 1/r, whereas the sum is finite (because §[CaB;] <
[B;]t). Thus, sufficiently close to the channel, the first term will
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dominate such that calcium is approximated by ®/4mrD,,, ;. It can
be shown that this happens for r << r,;, = min 1/V ;. This
describes the behavior of calcium close to the channel. The next
issue is the near-channel behavior of the buffers. Clearly, the
buffer saturations can only be finite because the total buffer
concentration is finite. But what determines the saturation level of
a buffer?

VI. The maximal buffer saturations depend heavily on the
kinetics of interaction of calcium with the buffers. The faster a
buffer, the higher its chance to bind calcium close to the
channel and the bigger its saturation. This saturation scales
linearly with the single channel current and can be calculated
explicitly to check the validity of the small saturation assump-
tion. We have mentioned that our approach is based on the
assumption of small buffer saturations. Hence, one needs to be
able to check the validity of this assumption before applying
the theory. This in turn raises the question of whether it is
possible to estimate the degree of buffer saturation, given the
experimental conditions such as single channel current and
buffer characteristics. Because the concentration deflections
from rest are maximal in steady-state and the higher, the closer
we are to the source, the limit for » — 0 gives us an upper
bound for the maximal expected buffer saturations. For this
sake, let x = (8y,(0) 8y,(0) - 8y,(0))" denote the vector of buffer
saturations at the source. Then, using Equation AI.10, one
arrives at the following identity:

. (exp(—r/C) —Id)-C ¢
lim p =

r—0

(13)

— \E' Clo., i.e.,wfx = —o.

Thus, the buffer saturations can be calculated analytically as the
solution to the above linear algebraic system of equations. It can
be shown that the buffer saturations can also be calculated ac-
cording to:

-Jm 0 - 0
0 C -
yoy={s-| T .. -7l
0 Y — VN1 j
(14)
= 7(\/3'“)]'.

In other words, we compute the (positive) square root of B,
perform the matrix product —V/B - u, and the j-th component
of this vector gives the concentration deflection from rest of
the calcium-bound form of the j-th buffer at the source in
steady-state.

To develop an intuitive understanding of the parameters that
determine the maximal buffer saturation, it is instructive to cal-
culate the saturation for the case of one buffer. Then, the matrix
B has the eigenvalues w, = 1/7D, + k{/7Dc,, n, = 0. Using
Equation 14, we arrive at:

Dy \/171

S[BCa](O) = m. (15)

Hence, the buffer saturation at the source is a product of three
factors: one involves only equilibrium buffer properties, «,/
47(k,D, + Dg,); the other, Vu,, is just the inverse length-
constant of the buffer proportional to the kinetic term 1/V/7,; and
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the last factor is just the single channel flux ®. Consequently, the
following conditions lead to large saturations: large current, short
buffer length-constant (fast kinetics), and low diffusion coeffi-
cient. Comparison with Equation 12 also reveals that the buffer
saturation at the source is identical with the expression for the
buffer concentration deflections for long distances from channel,
evaluated at r = 1/V p,.

Because our approach is based on the small saturation assump-
tion and the buffer saturation is maximal at the source, Equation 13
can be used to check, as a sufficient condition for the validity of the
method, whether the expected saturation is indeed going to be
small.

VII. For distances from the channel that are comparable with
the length-constants, the action of the buffers is to produce a
“relay race diffusion”: a buffer takes calcium from one with a
shorter length-constant and hands it over to one with the
longer length-constant. So far, in sections IV-VI, we have
investigated the behavior of the steady-state gradients for
distances much longer or shorter than the characteristic buffer
length-constants and developed a formalism that allows us to
check for the buffer saturations, and hence the applicability of
our approach. In this section, the objective is to look at
distances from channel, which are of the same order of mag-
nitude as the buffer length-constants, and explore the main
properties of our linearized solution to reveal some insights
into what the characteristic buffering length means. This is
best demonstrated by studying the fluxes of different calcium-
carrying species. We choose to illustrate the general principles
for buffer conditions that match whole-cell recording situations
in bovine chromaffin cells in the sequel.

We assume the presence of 0.5 mMm of a fast, slowly mobile
endogenous buffer (Zhou and Neher, 1993) as well as 2 mm ATP
in the cell. Figure 1A illustrates the differential effect of the
successive addition of different buffers. We have plotted §[Ca**] -
r (computed according to Equation AI.10) over the distance r to
eliminate the “1/r-law” and show the pure buffer effect. Starting
with 2 mMm ATP as the only buffer, one sees that it is buffering
even at distances within nanometers of the channel in accordance
with its length-constant of 10 nm (topmost curve in Fig. 14). The
addition of 0.5 mm of a low-affinity, poorly mobile, fast endoge-
nous calcium buffer shows up in the range between 20 and 200 nm
and is of rather small amplitude. With this buffer background, we
then add either 2 mM EGTA or 2 mm BAPTA (Table 1). Note
that both buffers have very similar binding ratios (4600 and 4300,
respectively) and thus give rise to similar concentration deflec-
tions for large distances from the source according to Equation
12. Under the specified conditions, the length-constant for EGTA
is 419 nm and for BAPTA 28 nm. In the case of BAPTA, the
buffering is completely dominated by BAPTA above 30 nm,
giving rise to steep gradients. In the case of EGTA, one clearly
sees the multiphasic decay: under 100 nm, ATP and the endoge-
nous buffer are doing the job, whereas EGTA produces only
small, almost linear gradients between 100 and 400 nm. At very
small distances, i.e., within nanometers of the channel which is
below all the length-constants, none of the buffers can act signif-
icantly and all curves overlap and approach ®/47D,. To dem-
onstrate the relative contribution of the different buffers in the
above system, we have plotted the individual fluxes of all calcium-
carrying species in Figure 1B. They were calculated using the
explicit representation of Equation AI.10 together with Equation
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10 and can easily be seen to be given by (®;: flux of the i-th
species,i = 1,..., N + 1):

gl D] * 0

G =dal - o o | llexp(—r\C) = Id)-C'o
0 * DN

Dy

+r-exp(—r\C)- \[C o}
N

Dy =D — D, Dy

i=1

(16)

The total flux corresponds to 3.1 X 10° calcium ions/sec and is
spatially constant. Initially, ATP carries calcium away from the
source and has almost 42% of the calcium flux (1.3 X 10°
ions/sec) at 50 nm. As one moves away from the source, the
calcium ions are progressively taken over by the endogenous
buffer, which has its maximal flux between 200 and 300 nm. In
accordance with its large length-constant, EGTA slowly takes
over most of the calcium load, corresponding to its big binding
ratio. This differential buffering within distances in the range of
the length-constants is a kinetic effect. Equilibrium considerations
here are inadequate. On the other hand, as seen in Equation 12,
for distances larger than 2 um, the relative fluxes are governed
purely by the relative binding ratios and diffusion coefficients. To
further illustrate the kinetic notion of buffer length-constant, we
have calculated the spatial changes of the individual buffer fluxes,
i.e., the spatial derivative of the fluxes, which is given by the
simple expression:

d gl Dl ° 0
— T = —4ar| - : : cexp(—r+/C) -
. p( ry ) e
dr
O * DN
Dy

(17)

d Nd
E(DNJrl: _zaq)i-

Figure 1C plots these flux changes, normalized to the respec-
tive peak changes, as a function of distance from the channel. In
the case of calcium, the absolute value of the flux changes is
plotted to get positive values. As one would expect intuitively, the
individual curves for the buffers peak at the length-constants of
the buffers. This clarifies another interpretation of the notion of
length-constant: it is the point in space where a buffer maximally
changes its contribution to carrying calcium. The widths of the
curves also correlate with the length-constants: the smaller the
latter, the faster the changes and the smaller the half-maximal
widths. The changes in the flux of free calcium, of course, are
maximal in absolute value where the first buffer, i.e., the one with
the shortest length-constant, maximally changes its flux. Thus, the
free calcium curve peaks with the ATP curve. In a sense, these
spatial flux changes constitute a “spectroscopy of the buffered
diffusion problem”: as we move away from the source, by looking
at the buffer flux changes we get a unique fingerprint of the
individual buffers present (and their contribution to chelating
calcium close to the channel) because they appear, one after the
other, as individual peaks in the flux changes.

VIII. Application: a single calcium channel cannot control release
of neurotransmitters at the calycal synapse in the MNTB. Finally,
as an application, we now want to demonstrate how these theo-
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Figure 1. Effect of multiple buffers and their contribution to the flux of calcium. In A, starting with 2 mm ATP (top trace), different buffers are added
successively, and their range of buffering is visualized by plotting §{Ca®"] - r (calculated using Eq. AL.10) over r to eliminate the “1/r-dependence” of
the calcium concentration deflections. In the absence of EGTA or BAPTA, the ATP kinetics is showing up between 10 and 50 nm from the channel,
whereas the endogenous buffer shows up in the range of 50200 nm. For larger distances, the equilibrium buffer properties according to Equation 12
determine the concentration of calcium. Although EGTA and BAPTA have similar binding ratios and hence equilibrium (Figure legend continues)
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Table 1. Parameter values used for the different involved buffer species
and calcium

Ky kon (M~'  Diffusion coefficient
(M) sec™h) (wm?/sec)

EGTA 0.18 2.5x10% 220

BAPTA 022 4.0x10% 220

ATP 2300.0 5.0x10% 220

Ca®* 220
Endogenous mobile buffer 50.0 1.0 x 10® 15

The values for ATP are chosen to correct for the presence of 3 mm total Mg?* in
a typical internal solution, for instance 2 mm MgATP and 1 mm MgCl, giving rise
to 0.17 mm free ATP. Hence, the literature values for K, and k,,, are scaled by the
factor 2 mm/0.17 mm ~ 11.8 (Klingauf and Neher, 1997). The kinetic parameters for
EGTA and BAPTA are according to M. Naraghi and E. Neher (unpublished
results). The diffusion coefficient of the mobile endogenous buffer is chosen as in
Zhou and Neher (1993), its on-rate and K, according to Xu et al. (1997), and its
total concentration such that the binding ratio is 10, as estimated in Zhou and Neher
(1993). The diffusion coefficient of free calcium corresponds to the number mea-
sured in oocyte cytoplasm (Allbritton et al., 1992); for the exogenous buffers, the
value expected in water divided by 2 (to correct for viscosity) is taken. The resting
calcium concentration [Ca>*] is always assumed to be 0.1 M.

retical considerations can be used to draw conclusions about the
nature of transmitter release at a fast central synapse, namely the
calyx of Held. The issue we examine is the question of whether
the opening of a single calcium channel is sufficient to trigger
phasic transmitter release. Because this spatial and temporal
domain is not accessible to direct measurements, one needs to
indirectly interfere with the transmission process to reveal some
of its properties. For the calyx-type synapse in the rat medial
nucleus of the trapezoid body, Borst and Sakmann (1996) have
performed kinetic competition experiments by dialyzing the ter-
minal with different concentrations of fast and slow exogenous
calcium buffers of similar affinities, namely BAPTA and EGTA.
They have observed the extent to which these buffers are able to
compete with the endogenous calcium sensor that triggers rapid
release and reduce transmission by reducing the free calcium
concentration at the sensor. Their basic observation is that 10 mm
EGTA is as potent in blocking synaptic transmission in these
terminals as 1 mm BAPTA. We will conclude that no reasonable
position for a release site can be found, which within the frame-
work of our model would predict such a result.

Assuming a power law between the free calcium concentration
and transmitter release, the result of Borst and Sakmann (1996)
implies that the secretion apparatus is located at a mean distance
from the channel in which both chelators can give rise to similar
calcium concentrations, if a single calcium channel would be able to
control release by virtue of its proximity to the calcium sensor in
the microdomain. Thus, we have searched for a location, i.e., a
distance from the calcium channel, in our model where similar
calcium concentrations are present with 1 mm BAPTA or 10 mm
EGTA. This position was found to be >1.1 um away from the

«
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channel where the calcium concentration was <20 nm above resting
values, even with single channel currents as high as 10 pA. Studies
of fast synapses, like the bipolar terminals of the retina (Heidel-
berger et al., 1994), demonstrate that the calcium sensor for trig-
gering release has a rather low affinity in the micromolar range. In
neuroendocrine chromaffin cells, the threshold for activating se-
cretion is ~500 nm (Augustine and Neher, 1992a). In addition, if 20
nM free calcium concentration above rest could trigger fast release,
the cell would need to control calcium with the precision of a few,
which seems to be impossible. Because these calcium concentra-
tions cannot be responsible for fast release, the small buffer satu-
ration regimen cannot provide a scenario for secretion in these
terminals. Hence, the microdomain of a single channel cannot
govern the release process unless we face significant buffer satura-
tion on channel opening in the microdomain. The latter, in turn, is
only possible with single channel currents much above 50 pA,
which is a completely unreasonable proposition. Thus, a single
calcium channel cannot by itself control release at a nearby release
site (by virtue of close proximity between the channel mouth and
the calcium sensor) in these terminals, arguing against
microdomain-dominated release. Only clusters of channels can
contribute to the buildup of high enough calcium concentration
domains to trigger the transmission. Once clusters of channels
produce sufficiently high calcium concentrations, BAPTA gets lo-
cally saturated because of its short length-constant (as we saw
before), whereas EGTA is much less saturated. Eventually, this
BAPTA saturation depletes it to an extent that EGTA and
BAPTA can exert the same influence on secretion. With increasing
source strength, the main advantage of BAPTA over EGTA in
buffering calcium close to the source, namely its fast kinetics, loses
importance, because buffer saturation leads to a point at which
availability of free buffer is the limiting factor (for instance, in the
limiting case of 100% saturation, BAPTA cannot buffer at all).
Then, the binding ratio (k) is the critical determinant of free buffer
availability, and thus equilibrium considerations and buffer prop-
erties dominate the buffered diffusion (see also discussion of the
“rapid buffer approximation” in the next section). Note that under
the conditions of the above experiments, the exogenous binding
ratio is so high (2100 and 22,000, respectively) that the buffer
length-constant is determined purely by /(7 D, ), which is equal
to [B] * kon/Dca, the buffer product divided by D, (see definition
of w; in VI). Consequently, the effect of two buffers can be
compared by multiplying the free buffer concentrations with the
on-rates to obtain the buffer products as good estimates of the
length-constants.

DISCUSSION

There is an ongoing discussion regarding the spatial relation
between presynaptic calcium channels and the secretion appara-
tus at synapses and its impact on the free calcium concentration at
the calcium sensor responsible for triggering exocytosis. It is

buffering powers, EGTA is kinetically limited in buffering within 100 nm compared with BAP TA because of its on-rate, which is two orders of magnitude

smaller than the on-rate of BAPTA.

In B, the contributions to calcium flux of the individual calcium-carrying species are plotted as a function of distance for the case of 2 mm ATP, 0.5
mM endogenous buffer, and 2 mm EGTA. The total flux corresponds to 3.1 X 10° ions/sec. Depending on its length-constant, there is a well defined range
within which each buffer is maximally exerting its kinetically limited buffering action. ATP, for instance, has a binding ratio of only 0.9. Nevertheless,
it captures >40% of the calcium ions within 30-200 nm. Farther away from the source, the calcium is “handed over” to the endogenous buffer and then
to EGTA. At large distances from the channel, 99.9% of the total flux is carried by EGTA. C plots the spatial changes of the fluxes (given in B),
normalized to their peak values according to Equation 17; for Ca®*, the absolute value of the flux changes is plotted. The curves peak at the
corresponding buffer length-constants, demonstrating the intuitive notion that the length-constants are points at which maximal changes of fluxes are
occurring. In this way, one gets a fingerprint of the present buffers, indicating their range of kinetic action.
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debated whether secretion is triggered by the opening of a single
calcium channel, which is somehow associated with its prefusion
complex, or whether the simultaneous action of many calcium
channels leads to a sufficiently high calcium level to trigger exo-
cytosis (Roberts et al., 1990; Augustine et al., 1991; Stanley, 1993;
Llinas et al., 1995). The first scenario, the “single channel do-
main,” is supported by recent findings indicating molecular inter-
actions of calcium channels with components of the famous
SNARE-complex (Bennett et al., 1992; Rettig et al., 1996; Sheng
et al., 1996). The other scenario, the “domain overlap regimen,”
is suggested by experiments showing that even slow buffers of
EGTA type are capable of reducing synaptic transmission at
moderate concentrations (Borst and Sakmann, 1996) or the exis-
tence of synapses with low release probabilities but a high number
of docked vesicles (Rosenmund et al., 1993). Unfortunately, in
general, it is not possible to measure directly the free calcium
concentration at the relevant release sites. The solution to this
problem has been to use extensive numerical simulations of the
buffered diffusion problem.

This paper outlines a linearization of the general reaction—
diffusion problem that is aimed at determining the parameters
shaping the calcium gradients close to a calcium channel in
analytical and intuitive terms. Our work is an extension of the
results of Pape et al. (1995). It is a submicroscopic theory that can
only be usefully applied if we are considering distances up to a
few hundred nanometers from the calcium source. The theory is
specifically tailored for use in a temporal and spatial domain that
is not accessible to imaging, with the objective to obviate time-
consuming simulations of diffusion-reaction equations.

Because standing gradients rapidly evolve close to a channel
(Appendix II), we focus on steady-state concentration profiles of
calcium and calcium-bound buffers. It is noted that fixed buffers
do not affect the steady gradients. This is because they cannot be
replenished by diffusion of free buffer. Other mechanisms affect-
ing calcium signaling, such as active transport of calcium ions, can
only have little effect within this range because it is impossible to
achieve such a high density of pumps and exchangers within a
small area to counteract the calcium influx within <1 msec.
Hence, we can focus on the impact of mobile buffers. The main
feature of our approach is the assumption that the saturation of
the involved buffers, i.e., the incremental increase in the concen-
tration of calcium-bound buffers on channel opening, is small
enough to permit a linearization of the problem. This is mostly
equivalent with sufficiently small single channel currents or suf-
ficiently high buffer concentrations. Note that we do not require
the increase in free calcium concentration to be small (which in
general is not the case as one approaches the source). The reason
for this freedom is the fact that we compute the free calcium
concentration as the difference between the totally expected
calcium increase (in the absence of any buffers) and the scaled
sum of the calcium-bound buffer concentrations (see Eq. AI.10).
If this applies, one can deduce many properties of our solution to
the reaction—diffusion problem.

(1) The increase in [Ca®*] above resting values, 8§[Ca*"], as
well as that of the calcium-bound buffers, is proportional to the
source strength given by the single channel current.

(2) To each buffer present, one can assign a buffer length-
constant that is determined by equilibrium (dissociation constant
and total buffer concentration) and kinetic (on-rate for calcium
complexation) properties of the buffer as well as its diffusional
mobility. It mainly represents the average distance a calcium ion
will diffuse before it is captured by the buffer and the average
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distance the buffer will diffuse until it gets into local equilibrium
with calcium.

(3) The shape of the gradients surrounding a channel is deter-
mined by a multiexponential law (with rates given by the inverse
length-constants) superimposed on a “1/r-law,” which one expects
in the absence of any buffers.

(4) For distances large compared with the length-constants, the
concentration deflections above resting values are determined
purely by equilibrium buffer properties, i.e., the on-rates of the
buffers have no influence on the concentrations, because there is
enough time for the reactions to reach chemical equilibrium.

(5) On the other side, for distances short compared with the
length-constants, the buffers are not able to bind calcium. This is
because calcium ions will diffuse to regions of lower [Ca®"]
within the time the buffers need on average to bind calcium. As a
consequence, 8[Ca>"] will behave as it does in the “no buffer
regime,” showing the pure 1/r dependence.

(6) The individual buffer saturations for a specified single
channel current and defined buffer conditions depend heavily on
the individual length-constants. The bigger the length-constants,
the smaller the buffer saturations. Maximal buffer saturations can
be computed on the basis of the buffer parameters to check in
advance whether the theory will be applicable.

(7) The solution to the problem can be written analytically in
terms of the buffer parameters. Numerical computations can be
reduced to standard eigenvalue problems involving spectral de-
composition of matrices. The latter can be done most effectively
using existing program packages and thus eliminates the need for
expensive discretizations of the involved differential equations.

(8) Finally, in case all diffusion coefficients are identical, the
temporal evolution of the gradients in the vicinity of an open
channel can be written as a convolution product of a purely
reactive term and a purely diffusive term, which permits effective
computation of the time courses.

If the main assumption is fulfilled, one can use the present
approach to estimate [Ca®"] at different distances from the
channel and explore the differential effect of buffers on synaptic
transmission. But when is the main assumption fulfilled? By
tolerating, say not more than 20% increase in [CaB], the follow-
ing rule of thumb can be stated: with 100 um of an EGTA-type
buffer, 4 pA single channel current is allowed, and with 100 um of
a BAPTA-type buffer, 0.3 pA calcium current is allowed. It
should be noted, however, that these are really conservative
estimates. From simulations of reaction kinetics and comparison
of the linearized solution with the full numerical solution (not
shown here), we actually expect the linear approximation to be
valid over a much wider range of buffer saturations, and, of
course, as the concentration of mobile buffers increases, higher
single channel currents are tolerable.

An alternative approach to the problem of understanding the
steady gradients surrounding a channel is the “rapid buffer ap-
proximation (RBA)” (Smith et al., 1996). Here, one assumes that
the buffers are so fast that they are in chemical equilibrium at
every point in time and space. In other words, if the calcium
gradient is given by an exponential with a length-constant L and
the reaction time constant of the buffer is 7, then one requires 7
<< L?(2Dc,). This simplifies the general reaction—diffusion
system to one nonlinear partial differential equation. It has its
own merits if one is not facing sharp gradients. For instance, if we
have 1 mm BAPTA, then 7 = 4 w sec and L must be >150 nm for
the validity of RBA; however, close to the channel, i.e., between
10 and 150 nm, [Ca?"] falls exponentially with the length-constant
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Figure 2. Comparison of the steady-state rapid buffer approximation
with the linearized solution to the steady-state buffered diffusion problem.
A depicts [Ca®"] and B [CaBAPTA] as a function of distance in the
presence of 1 mM BAPTA with 150 fA single-channel current. The rapid
buffer approximation is calculated according to Equation 11 of Smith
(1996). Because chemical equilibrium is assumed everywhere in Smith’s
model, [Ca>"] is massively underestimated close to a channel where no
equilibrium can be reached. The linearized approach explicitly accounts
for kinetics and thus is void of this problem. The problem is also reflected
in B, where 1.8 um [Ca?*] saturates almost 90% of the buffer, whereas we
get only 10 uM maximal increase in [CaBAPTA] (i.e., 1% of total
BAPTA), close to the channel. The reason for this shortcoming is the
steep calcium gradient produced by BAPTA, with which the rapid buffer
assumption cannot cope, whereas the linear approach holds with only 1%
saturation. As expected, for distances larger than the length-constant of
BAPTA, the two curves converge.

of BAPTA, which is 30 nm. This implies that we cannot apply
RBA this close to the source. Figure 2 illustrates this point by
comparing directly the RBA solution according to Smith (1996)
with our solution. Clearly, RBA is underestimating [Ca**] (and
overestimating [CaBAPTA]) because it assumes chemical equilib-
rium of the reactions where, as we have seen, no equilibrium is
attainable. On the other hand, for long distances, our solution
matches the RBA as is visible in Figure 2 for » > 150 nm. Indeed,
it can be shown that Equation 10 of Smith (1996) is identical to our
Equation 12. Thus, our approach is valid for small saturation levels
(or sharp calcium gradients). On the other hand, if one is facing
high single channel calcium currents, which almost completely
saturate the mobile buffer over extended regions, RBA would be
appropriate to explore the microdomain properties.

Finally, let us outline how one could handle channel clustering.
The source in our considerations so far has been a point source of
calcium. Nevertheless, there is evidence that in some systems, tens
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or hundreds of calcium channels can be clustered (Tucker and
Fettiplace, 1995). We cannot treat them as a single channel and
accordingly scale up the single channel current because we would
then ignore the spatial arrangement of the channels. Fortunately,
the linearized scheme has an intrinsic feature that still allows us to
cope with these circumstances, namely the well known superposi-
tion principle. We can compute calcium and buffer concentrations
in response to the opening of a single channel in the cluster and
then consider a specific spatial arrangement of an array of channels
and sum up the individual concentration deflections by virtue of
one channel opening to get the profiles in response to the activation
of the whole channel cluster. This would allow us to rescue our
intuition within this model to complicated channel arrangements
without any need to discretize differential equations.

APPENDIX |
In this section, we solve the system (Eq. 9) in steady-state, subject
to the condition (Eq. 10) to derive an analytical solution for the
standing gradients surrounding an open calcium channel in its
microdomain. Equation 9 in steady-state, i.e., with Sy = (, can be
written as:
d2

—— o0y +

d
ar 8y =—(D"'-A)-8 =B-dy.

ar (AL1)
This is a system of ordinary differential equations that can

easily be simplified by the transformation &z = r - 8y to give:

2
P 6z =B- 82, (AIZ)
a linear second-order system with constant coefficients given by
B = (by)ii<}. Furthermore, integrating Equation 10 from r to o
and realizing that at infinity, the concentration deflections above
resting values are zero, i.e., 8y;(r = ©) = 0, we can rewrite (Eq. 10)
as:

N+1 N+1
® =4mr- >, D;+8y; or ®=4m- > D;dz.

i=1 i=1

(AL3)

Equation AIL3 is the transformed constraint subject to which
Equation AIL2 needs to be solved. We make the Ansatz & =
exp(—Lr)u for some matrix L € RVTD*W+D and a vector u €
RN, Differentiating 8z with respect to r twice according to
Equation AI2, we find that the following identity must be valid:

d2
—— 8z =L* exp(—Lr)u = B-exp(—Lr)u=B- &z,

dr?
ie.,L?=B. (AL4)

L is called the (positive) square root of the matrix B, L = VB,
and is determined by the square root of the eigenvalues of B and
the corresponding eigenvectors (Golub and Van Loan, 1989).
The vector u incorporates the constraint (Eq. AL3) and must
satisfy the identity:

(Dy, ..., Dyy1)rexp(—=Lr)-u= d/4m7. (ALS)

It is easy to see that the vector u is given by: u = ®/(47D,, ;) -
(0 0 - 0 1)". The last equation effectively reduces the dimension-
ality of the homogenous problem (Eq. AI2) by projecting it from
the N + 1-dimensional Euclidean space to an N-dimensional
submanifold. Mathematically, this is equivalent to a nonhomog-
enous problem in the N-dimensional space, the latter having the
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advantage of closed-form solutions. Incorporating Equation ALS
into the system (Eq. AL4), we can rewrite the latter in the
N-dimensional space spanned by 6z, ..., 8z, in terms of a new
matrix differential equation given by:

821 821
dz
ar =C + o, (AL6)
8‘2N 62N
C= (Cij)?,/jzl € RVN with ¢ = b; 1+ (—=Di/Dy.y) + by,
(AL7)
® = (bin+1boni1byns1) - ®/4TD N, € RV
Explicitly, C and ¢ are given by:
o —K; —K —ky\’
o= 1 2 N € RV,
47TDN+1 TlDl TzDz ’TNDN
C=
k1D, KDy
TlDl TlDN+1 7DDyt DDy
KDy 1 N K2 KDy
TzDzDN+1 D, Dyt DDy
KNDl KNDZ 1 Ky
TNDND i1’ TNDND 41 "Dy TNDni
c RNXN.

The solution to Equation AL6, which is finite at r = o, is given
by:

621

82'2

= exp(—1 [C)-v—C o, (ALS)

821\/

with some v € R™. The vector v is specified by the condition that
for small distances r from the channel, all of the flux is carried by
calcium, i.e.:

d
: 2,
11m<477r ar

r—0

5yi> =0,fori=1,...,N, (AL9)

and is given by v = C ~'¢. Inserting this in Equation AL8 with
&z = r - 8y finally gives us the desired closed-form solution to the
linearized, steady-state buffered diffusion problem as:

5)’1 821
&, | 1 8z | exp(—r{C)-Cl¢ C7l¢
. - ; . - r - r )
5}’1\/ 821\/
(AIL10)
® X D
N+ = 4mrDy+y Dy 8y]
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We can also arrive at a more intuitive representation of this
solution by using a spectral decomposition of the matrix B =
—D '+ A - B has the spectral representation as B = S+ A+ S !,
where Ay is the diagonal matrix composed of the eigenvalues p;
of Band § = (u; u, * uy uy,,) with u; the eigenvector of B
corresponding to the eigenvalue u;. The general solution to the
system (Eq. AL.2) can then be written as:

8z(r) = S+ exp(—rAg) - S'u or alternatively,

(AL11)

N+I

zae \M’ u;,

dy(r) =

where a; are some real numbers that incorporate the boundary
condition (Eq. ALS5). It is important to note that u,_, = 0is an
eigenvalue of B with the corresponding eigenvector u,, ; = (k;
K, * Ky 1), which is just the vector of equilibrium binding ratios.
Futhermore, it is easy to see that the vector a = (a, a,* ay ay,)
satisfies the equation § - a = ufu as in (ALS)] and is uniquely
determined by the same. Thus, our solution is a sum of exponen-
tials with unique coefficients determined by the calcium flux
condition, divided by the distance r. For N = 1, we get:

(I)Kl

o i
dmr(D, + Doy 7€)

S[BCa](r) =

s

(AL12)

S[Ca*](r) = N Rt RN
4ar(k,D, + Dcy) De, ’

which is the result of Pape et al. (1995), written in other terms.

APPENDIX II

The purpose of this section is to derive the transient solution
of the linearized buffered diffusion problem for the case of an
arbitrary number of mobile buffers with equal diffusion coef-
ficients but different kinetics. The condition of equality of the
diffusion coefficients has been used in many simulation studies
(Nowycky and Pinter, 1993) because most exogenous mobile
buffers (such as EGTA and BAPTA but also ATP) and calcium
ions have estimated intracellular diffusion coefficients ~200
wm?/sec. Here, it is used merely to simplify the algebra of our
analysis.

We start with Equation 9 describing the dynamics of the
linearized reaction—diffusion problem and substitute 8y =
exp(At)déz, with A representing the chemical relaxation matrix
according to Equation 8. This substitution eliminates the re-
action term in Equation 9 and results in a pure diffusion
equation given by:

Sz=d 825 265 AlL1
“= e %) (ATLI)

where d is now the diffusion coefficient of the buffers, i.e.,d = D,
=...= Dy, . Next, we perform a Laplace transform of Equation
AIL1 with respect to ¢. If 8z denotes the Laplace transform of &z,
and realizing that &z(t = 0,r) = &y(t = 0,r) = 0 for all r, we get:
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& d - 2204 AIL2
N Z(S,r)— WZ‘F;;Z, ( )
the solution of which is easily seen to be:

R e’ s/d

oz(s, r) = p - B(s), (AIL3)
for some vector B(s) € R™*! yet to be determined. This is

achieved by considering the calcium flux condition. Again, at r =
0 and for t > 0, we have a constant flux ® of calcium without any
sources or sinks for the buffers. Hence, we have the flux of all
calcium-carrying species given by the vector:

0
. J
= . = —1 2.0 d. i
V=3, lln:<477r d- 8y>,1.e., (AIL4)
1 r—l
0
o-e | | = —tim( 4m?-a- 2 52 (AILS)
0 ar ) )

1 r—0

Equation AIL3 gives us the Laplace transform of &z, hence
we transform Equation AILS5 and compute (d/dr)oz to deter-
mine B(s):

0
) 9 .
d-(A+sld)!- 0l= —1im<471'r2-d-582> = 4md - B(s), i.e.,
1 r—0
(AIL6)

0

Bs) = (A +s1d) |

(s) = m( +sld)" |

1

The last equation gives together with Equation AIL3 the
Laplace transform of the desired result:

0

A D e VM .

SZ(S, r) :W(A +Sld)7l‘ 0l (AII7)
1

The inverse transform of e "~*? is g(t, r) = dr - e i Y)(2ud -
Vmitd) and the inverse transform of (4 + sid)™' - (0. 0 1)’ is just
e (0 . 0 1). This together with the convolution theorem of
Laplace transformation finally results in the following represen-
tation of &z(¢, 7) as the convolution product:

t

oz(t, r) _(ID.J (u, Ne™ " Wdu-(0.0 1), ie
’ dadr | 8 ' >
0
(AILS)

4) t
Sy(t, r) = W-jg(u, retdu- (0.0 1)".
0
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The computation of dy(¢, ) can be done efficiently by per-
forming a spectral decomposition of the chemical relaxation
matrix A. Because A is uniquely determined by the kinetic
properties of N different mobile calcium buffers, it has N + 1
distinct eigenvalues, including zero. Hence, it has the spectral
representation as:

A=T-A, T, (AIL9)

where A, is the diagonal matrix of eigenvalues of A4, i.e.,

A 0 - 0
0 )\2 *
Ay= . . c R(N+1)><(N+1)’
. . 0
0 : 0 Ay

(AIL10)

and the i-th column of T is the eigenvector of A corresponding to
the eigenvalue A;. Equation AILS8 can then be rewritten as:

e 0 - 0 0
Sy, r) = o T e duT |
y(t’r)_477dr g(u’ r) u 0
0 0 0 e)\mm 1

(AIL11)

This implies that the computation of 8y(f, r) consists of the
following steps. First, we compute A, its eigenvectors and eigen-
values, as well as T~(0 0. 1). Then, we perform N + 1 numerical
integrations of the integrals [} g(u, r)e*"du and subsequently the
matrix products.

Let us consider the case of one mobile buffer, i.e., N = 1, to
estimate the time needed to achieve steady-state. The eigenvalues
are: Ay = —(1 + k;)/7, A, = 0, and the corresponding eigenvec-
tors are e; = (=1 1), e, = (k; 1)". Then:

S RE I DL e

Finally, using Equation AIL.11, we get the following representa-
tion of the transient concentrations after channel opening:

t —(1+k1)

S[BCa] = . 1 )
[ a]—m Py glu,r)(l1—e )du,
0

(AIL13)

t —(1+k1)

(D 1 1 Tl “ d
dmdr w1 gu, r)(1 + ke )du.
0

d[Ca’*"] =

Figure 3 depicts the expected time courses of relaxation of
8[Ca*"] and §[CaB] toward steady-state, according to Equation
AIlL13, at different spatial positions for an EGTA-type buffer,
present at 2 mm total concentration. We have computed the ratio
of the instantaneous concentration of §[Ca*"] (4) and §[CaB]
(B) over the expected steady-state concentration. These fractions
of the steady-state concentration values, which are independent of
the single channel calcium flux, are plotted as pseudocolored
images as a function of time and distance from channel. Super-
imposed on the images are the lines where a constant fraction
(indicated by the numbers) of the steady-state concentrations are
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Figure 3. Transient gradients as a fraction of steady-state gradients. Pseudocolor images of the ratio of the actual concentration over the steady-state
concentration of the corresponding species for 2 mm EGTA. A4, §[Ca?"]/§[Ca?*](t = =). B, {CaEGTA]/§|CaEGTA](t = ). Superimposed on the
images are the lines where a constant fraction (indicated by the numbers) of the steady-state concentrations are achieved.
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achieved. As is visible in A4, even at 500 nm distance, 90% of the
steady-state calcium concentration is reached within 0.5 msec. We
can state that within a few hundred nanometers from the channel,
calcium gradients reach steady-state within <1 msec.
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