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Obstacle Avoidance and a Perturbation Sensitivity Model for

Motor Planning

Philip N. Sabes and Michael I. Jordan
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A novel obstacle avoidance paradigm was used to investigate
the planning of human reaching movements. We explored
whether the CNS plans arm movements based entirely on the
visual space kinematics of the movements, or whether the
planning process incorporates specific details of the biome-
chanical plant to optimize the trajectory plan. Participants
reached around an obstacle, the tip of which remained fixed in
space throughout the experiment. When the obstacle and the
start and target locations were rotated about the tip of the
obstacle, the visually specified task constraints retained a ro-
tational symmetry. If movements are planned in visual space, as
indicated from a variety of studies on planar point-to-point
movements, the resulting trajectories should also be rotation-

ally symmetric across trials. However, systematic variations in
movement path were observed as the orientation of the obsta-
cle was changed. These path asymmetries can be accounted
for by a class of models in which the planner reduces the
likelihood of collision with the obstacle by taking into account
the anisotropic sensitivity of the arm to external perturbations
or uncertainty in joint level control or proprioception. The model
that best matches the experimental results uses planning cri-
teria based on the inertial properties of the arm.

Key words: human psychophysics; visuomotor control; motor
planning; reaching; obstacle avoidance; optimal control; theo-
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Many of the motor tasks facing the CNS are characterized by
extrinsic (visual space) constraints, which are insufficient to iden-
tify a motor response uniquely. When reaching to a visual target,
for example, the CNS must convert visual information such as the
target position and the location of obstacles in the workspace into
one of the infinite possible motor sequences that would attain the
goal. One solution, the visual planning model, is to begin by
treating the arm as a single point in space, i.e., an end point such
as the index finger, and specifying an extrinsic trajectory for that
point. This strategy is attractive, because it allows the CNS to
plan movement in the space where tasks are typically defined,
leaving the kinematic and dynamic details of the biomechanical
plant to a subordinate controller. On the other hand, these details
could prove useful to the planner, providing information to sat-
isfy the task constraints in a more optimal manner.

The visual planning model derived from observations of invari-
ances in the extrinsic kinematics of pointing movements (Bern-
stein, 1967; Morasso, 1981; Abend et al., 1982) and from compu-
tational models that accounted for those invariances (Hogan,
1984; Flash and Hogan, 1985). A recent wave of evidence for
visual planning has come from experiments showing that these
same invariances re-emerge after adaptation to altered dynamic
environments (Flash and Gurevich, 1991; Lackner and DiZio,
1994; Shademehr and Mussa-Ivaldi, 1994) or perturbed visual
feedback (Flanagan and Rao, 1995; Wolpert et al., 1995; Sabes,
1996). However, other researchers have argued that the kinemat-
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ics of arm movements can be better explained by models of
intrinsic (e.g., joint level) planning (Soechting and Lacquaniti,
1981; Kaminsky and Gentile, 1986; Flanagan and Ostry, 1990;
Desmurget et al., 1995). And further evidence suggests that arm
dynamics can play a role in the planning process. For example,
Uno et al. (1989) show that when movements are made through
one of two via points located symmetrically about the line from
initial position to target, the resulting paths are not symmetric,
contrary to the predictions of the visual planning model.

One reason for the inconclusive nature of these studies is that
they have mostly been based on an overly restrictive set of tasks:
simple point-to-point reaching movements. In this paper, we
explore a more complex task, that of reaching around a visually
displayed obstacle. From trial to trial the obstacle tip remained
fixed in space, whereas the obstacle, the initial position, and the
target were all rotated around the fixed obstacle tip (Fig. 1). As a
result, the task constraints were rotationally symmetric across
trials.

This obstacle rotation design has a dual purpose. First, we want
to determine whether this more complex set of movements dis-
plays extrinsic kinematic invariances, i.e., whether these obstacle
avoidance trajectories obey the rotational symmetry of their task
constraints. Systematic differences in the trajectory as a function
of obstacle orientation would suggest that movement planning is
not based entirely on the extrinsic coordinate frame but, rather,
takes information such as the kinematic or dynamic properties of
the arm into account. Second, the obstacle rotation design allows
a quantitative analysis of any such trajectory variation, from
which we can hope to identify the operative planning criteria.

We show that participants did exhibit systematic variations in
movement trajectories as a function of obstacle orientation. To
account for these variations, we propose a class of models based
on minimizing the sensitivity of the arm, with respect to the
obstacle, to position uncertainty or force perturbations. Finally,
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Figure 1. Obstacle rotation experiment. A, Position of the participant
relative to the virtual image. The triangular obstacle and start and target
circles are shown for two different trials, one in black and one in gray. The
tip of the obstacle, which remains fixed throughout the experiment, is
chosen to lie at a particular location in the participant’s joint coordinates,
6 = (6,,6,). B, Dimensions of the visual scene.
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Figure 2. Virtual visual feedback system.

we show that one of those models, that based on the inertia of the
arm, accounts best for the observed data.

MATERIALS AND METHODS

Apparatus. Participants were seated at the virtual visual feedback system
shown in Figure 2. Participants wore a strap to ensure that their right
shoulder was fixed in space and rested their right arm on a table at
shoulder height. Also, the right wrist and index finger were fixed in a
fully extended posture. Movements made with that arm were thus con-
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strained to two degree of freedom (shoulder and elbow rotation) planar
motions. Finger tip location and joint angles were recorded with a
Northern Digital (Waterloo, Ontario, Canada) Optotrak infrared
position-monitoring system. Participants wore an infrared marker on
the tip of the index finger and a rigid body containing six markers on the
upper arm. Experiments began with a calibration procedure in which
the positions of the shoulder and elbow with respect to the rigid body
were measured, allowing for on-line determination of the shoulder and
elbow angles. Participants’ view of their arm was blocked by a mirror
reflecting a projection screen. A 72 Hz 640 X 480 VGA projector
(MediaShow, Sayett Technology) provided visual feedback in the form of
a l-cm-diameter white-filled circle, the virtual image of which followed
the position of the index fingertip. Obstacles, starting locations, and
targets were similarly displayed.

Procedure. Each trial began with a white (start) circle, a blue (target)
circle, and a yellow triangular obstacle appearing in the workspace (see
Fig. 1). Participants were instructed to move their finger into the start
circle and wait for a tone, at which point they were to reach around the
obstacle tip to the target circle, making sure to avoid hitting the obstacle
with their finger. If the fingertip collided with the obstacle, a low tone was
sounded, and the trial was restarted. Otherwise, when the participant’s
fingertip came to rest in the target circle, a high tone was sounded, and
the screen went blank until the next trial. Participants were given no
further instructions, except to move naturally and comfortably.

For each experimental session, the location of the obstacle tip was
prespecified as a point in joint space (6;,60,) (see Fig. 1). The layout of
each trial was determined by a presentation angle ¢, corresponding to the
orientation of the obstacle with respect to the positive x axis (rightward).
If the presentation angle was ¢ = 90°, for example, the obstacle pointed
away from the participant. Trials occurred in “there-and-back” pairs;
identities of the start and target circles were switched within a pair, but
the presentation angle was held fixed. A session consisted of 150 trial
pairs with presentation angles randomly chosen from a uniform distri-
bution over the circle. In addition, at the beginning of each session,
participants were given a short warmup set of about about 10 trial pairs
to familiarize them with the task. Participants were five right-handed
males, aged 1828 years, who had normal or corrected to normal vision
and were naive as to the purpose of the experiment. All five participated
in two sessions, one at each of two obstacle tip locations: position 1, § =
(30°,110°); and position 2, 6 = (75°,75°). Three subjects were tested at
position 1 first, two at position 2 first.

Trajectory analysis. Velocities were calculated by simple first differenc-
ing of positions. For higher derivatives, the planar positions of the
fingertip were fit with cubic smoothing splines, and derivatives were
taken analytically from the spline fit. Curvature of movements was
calculated using the equation:

Vlly = Vyly
€= 2 2 3o
vy +vy)2

where v_and a_are the velocity and acceleration, respectively, in the
subscripted direction.

Four trajectory landmarks were defined: the near point (NP) or point
of closest approach to the obstacle tip; the apex or point of maximal
deviation from the straight line path (AP); the location of the local
minimum of velocity (VM), if there was one; and the location of the peak
of curvature (CP). For each landmark a corresponding angle, 8, is
defined as the difference between the presentation angle and the angle of
the landmark from the obstacle tip. Figure 3 illustrates the case of the
near point angle, dyp.

A sensitivity model

Later we will show that the trajectory near points tended to cluster at
opposite poles of the obstacle tip, roughly aligned with the orientation of
the forearm. This observation suggests that the planner chose the near
point location based, indirectly at least, on the configuration of the arm.
What properties of the arm would make one location more desirable for
the near point than others? We suggest that the key to answering this
question is the notion of the anisotropic sensitivity of the arm. Because
the only constraint on the movement, other than the start and target
points, is to avoid colliding with the obstacle, it would be desirable to
choose a path which minimizes the sensitivity of the arm to uncertainty
or perturbations in the direction of the obstacle. We next introduce three
definitions of sensitivity: one purely kinematic, one based on the inertial
properties of the arm, and one based on its elastic properties. We then
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Figure 3. Definition of the near point angle, 8yp. The other landmark
angles are similarly defined.

show why these directional sensitivities are relevant to trajectory
planning.

Kinematic sensitivity: manipulability. The first definition of sensitivity is
based solely on the kinematics of the arm. We are interested in how
uncertainty in joint angle control or proprioception propagates to un-
certainty in the end point position. Assume that the joint controllers (or
sensors) are noisy, with independent noise at each joint having variance
2. Then the covariance of the resulting uncertainty in achieved (sensed)
Cartesian end point position can be derived as follows:

Cov(dx) = E(dxdx') ~ E(Jd0do' J') =] Cov(d0)]' = o', (1)

where dx and d6 are the end point and joint uncertainty, respectively, J(6)
is the Jacobian of the arm at the specified joint configuration, E(-) is the
expected value of the argument, and ' indicates the matrix transpose. The
approximation at the second step follows from the definition of the
Jacobian and is valid as long as the uncertainty is sufficiently small. From
Equation 1 we see that the matrix

M(6) =J(6)J'(6)

shapes the independent joint noise into anisotropic end point noise. M
can thus be thought of as a measure of directional sensitivity; it is more
difficult to position or sense accurately along the major eigenvector of M
than along its minor eigenvector.

Yoshikawa (1990) calls the matrix M manipulability, because of the fact
that the eigenvalues of the matrix correspond to the maximum end point
velocities achievable along the respective eigenvectors for a given mag-
nitude of joint velocity. Increased manipulability leads to greater end
point velocity for the same angular velocity, but it also requires finer joint
control or sensing to achieve the same accuracy at the end point. Here,
we focus on how the CNS might use the information represented by M to
best take advantage of (or cope with) anisotropic manipulability.

In the present experiment, the arm is constrained to planar two-joint
movements, so the Jacobian is well approximated by:

J= —I, sin 6, — [, sin(0; + 6,) —[, sin(6; + 6,)
| lycos 6, +1,cos(0, + 0,) [,cos(6,+ 6, |’

where [, and /, are the lengths of the upper arm and forearm, respectively.
We can thus compute the manipulability matrices from experimental data.
These matrices can be displayed as ellipses representing 1 SD of end point
noise. Examples are shown as the solid ellipses in Figure 4.

We note that the assumption of independent and equal magnitude
measurement or control uncertainty at the two joints is simplistic. The
existence of muscles (and hence spindle receptors) such as the biceps,
which span both the shoulder and elbow, make it clear that uncertainty at
the two joints should not be independent. Scott and Loeb (1994) ana-
lyzed the proprioceptive uncertainty that results from the distribution of
spindles across the musculature of the arm and found neither indepen-
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Figure 4. Sensitivity ellipses at various joint configurations. Solid, Ma-
nipulability; dashed, mobility; and dotted, admittance. The absolute mag-
nitude of the ellipse is irrelevant for our purpose; we are concerned only
with its shape and how that shape changes over the workspace. The major
(minor) axis of the ellipse corresponds to the major (minor) eigenvector.

dent nor equal magnitude uncertainty at the two joints. We applied their
estimates of joint covariance to Equation 1, but the refinement did not
greatly change the quantities of interest here. Thus, for the sequel we will
use the simplified model shown above.

Inertial sensitivity: mobility. A second measure of sensitivity is based on
the instantaneous response of the arm to dynamic perturbations. Following
the definition of Hogan (1985), we define the end point mobility matrix:

w(6) =J(6)I"'(6)J'(9),

where (6) is the inertia matrix of the arm. W is the inverse of the joint
inertia matrix transformed into Cartesian space, and it relates a force f at
the end point to the resulting acceleration: a = Wf. As in the case of
manipulability, the eigenvectors are easily interpreted; the major (minor)
eigenvector is the direction along which force perturbations have the
largest (smallest) effect.

Direct measurements of the inertia of the arm are not available.
Instead, we used a simple model, which treats each segment of the arm as
a point mass, m, and m,, located a fraction a or b along the respective
segment length. The resulting inertia matrix is:

maa®l? + mol} + myb*3 + 2myblil,c 0, msblily,c8, + mob*3

1(6) = [ mablilac 0, + b2 b2 ] ,
where cf is the cosine of the respective angle of the respective angles. The
values of the masses and the fractions a and b were taken from LeVeau
(1992). A variety of reasonable values were tried, having little differential
effect on the quantities of interest here. In the sequel, we used values m; =
1.76 kg; m, = 1.65 kg; a = 0.475; and b = 0.42. The point mass approxi-
mation is reasonable in this case, because shoulder and elbow movements
in the horizontal plane of the shoulder involve very little rotation outside
the plane. The resulting mobility matrix estimates can be displayed in a
manner analogous to that used for manipulability matrices; examples are
shown as the dashed ellipses in Figure 4.

Elastic sensitivity: admittance. Finally, the importance of the elastic
stiffness, or mechanical impedance, of the arm for movement control has
long been discussed in the literature (Bizzi et al., 1976, 1982). The
inverse of the stiffness, the mechanical admittance, can be thought of as
a measure of sensitivity; a small static force perturbation will result in a
displacement proportional to the admittance.
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We first define the stiffness of the arm in joint space, R(6). Given R and
a joint displacement d6 about the current equilibrium 6, the resulting
joint torque is given by T = Rd6. When R is inverted and transformed into
Cartesian space, we obtain the end point admittance:

Z(0) =J(0)R(0)J'(6). 2)

Z determines the Cartesian displacement from the current equilibrium,
which will result from a static force perturbation: dx = Zf. Again the
eigenvectors are easily interpretable: forces of a given magnitude applied
at the end point will result in maximal (minimal) displacement when the
force is oriented along the major (minor) eigenvector of Z.

Although we did not measure the admittance of participants’ arms, we
were able to estimate values roughly for the joint stiffnesses from data
presented by Mussa-Ivaldi et al. (1985). In particular, that paper listed
the values of R at five locations in joint space. Using that data, we fit a
linear predictor to the components of R as a function of 6 and then used
this model to estimate R for the current arm configurations. The resulting
values of R at the two locations in joint space were:

[-22.4 -44 [ -205 —6.3
Ri=1 _67 —225| B~ | —g9 —163]"

Given these values, the end point admittance Z could be computed for a
given participant by Equation 2. This procedure makes a number of
simplistic assumptions, such as a linear dependence of R on 6 and the
invariance of R(6) across participants. However these simplifications are
not unreasonable for our purposes, because the orientation of the eigen-
vectors of Z changed by no more than about 10° for a given participant, and
location in the workspace when the values for R were varied within the
range seen by Mussa-Ivaldi et al. (1985) for the whole workspace. Estimates
of the admittance are displayed as the dotted ellipses in Figure 4. The reader
should keep in mind that the admittance ellipse is the inverse of the
impedance ellipse more commonly encountered in the literature.

Sensitivity and obstacle avoidance. For all three matrices introduced
above, the minor eigenvector represents the least sensitive direction, i.e.,
the one in which the least response to position uncertainty or force
perturbations is expected. This relationship is the key to the following
discussion. Because the comments apply equally well to all three matri-
ces, they will be referred to collectively as sensitivity matrices.

To understand how a sensitivity matrix relates to movement planning,
consider the examples of Figure 5. The fop panel shows a possible path
around an obstacle, the presentation angle of which is along the x-axis.
The sensitivity matrix for that location in the workspace is shown as an
ellipse centered at the obstacle tip. Would sensitivity considerations deem
this a good path? The region around the obstacle tip is expanded in the
right panel, which shows that the line from the obstacle to the near point
lies along the minor eigenvector of the sensitivity matrix. Because the
arm is most vulnerable to collisions when it is closest to the obstacle, it
is desirable for the arm to be relatively insensitive to uncertainty or
perturbations along the perpendicular to the path when passing the near
point. In this example, that criterion is maximally satisfied, because the
path perpendicular is the direction in which the arm is least sensitive.
Note that we have drawn the sensitivity matrix for the obstacle tip, not
for the actual location of the finger. This simplification is justifiable,
because all three sensitivity matrices vary slowly over the workspace.

Figure 5, bottom panel, shows an obstacle centered at the same location
but rotated 90°. The path displayed here is also the same as above but
rotated to achieve the start and target points. The near point now lies
along the major eigenvector of the sensitivity matrix. This means that
when the fingertip comes closest to the obstacle, the arm is maximally
susceptible to uncertainty or perturbations along the direction that will
lead to a collision. For this presentation angle, then, the same near point
angle is a poor choice.

These considerations can be turned into a simple model of near point
placement: the minor eigenvector of the sensitivity matrix represents a
preferred axis for the near point. To minimize the risk of collision, the
planner chooses the path of the arm to bring the near point closer to this
minimally sensitive axis. This idea can be captured formally with the
following statistical model of the dependence of the near point angle &y p
on the presentation angle ¢:

Sup = b(w — $)%180° + €, 3)

where € is zero mean, normally distributed noise with SD o, and y =
x%180°, the “signed modulus,” is defined as the y in the interval
[—90°90°] such that x = y + n 180° for some integer n. The two
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Figure 5. The relationship between a sensitivity matrix and obstacle
avoidance planning. Two paths identical up to a 90° rotation are shown.
The ellipses represent the sensitivity matrix at the obstacle tip. For further
discussion, see Materials and Methods.

parameters of the model are the preferred axis w and the slope b. The
latter is a measure of the strength of the dependence of 8yp on ¢.

To see how the model of Equation 3 relates to the idea of a preferred
axis for near point placement, consider the hypothetical data in Figure 6.
The top row shows data generated from Equation 3 with the parameters
w = 160°% b = 0.5; and o, = 25°. Note that the plot of &yp versus ¢
(Figure 6B) has two zero crossings at ¢ = w and ¢ = w + 180°. These
angles constitute the near point preferred axis; as the presentation angle
decreases from the zero crossing value, yp becomes positive, bringing
the near point back toward the zero crossing direction, and similarly for
larger presentation angles. Figure 64 shows the location of the near
points relative to the obstacle tip. They cluster toward the preferred axis.

Figure 6, bottom row, shows a second data set generated from Equation
3, this time with b = 0. Here, there is no dependence of dyp on ¢, and
the near points are uniformly distributed about the obstacle tip. Data
such as these are consistent with the visual planning model.

Given a set of experimental data, we wish to find the values of the
preferred axis w and the slope b that best account for the data. We take
a maximum likelihood approach. Equation 3 defines the probability, or
likelihood, of seeing a particular 8y p given some ¢. We want to find the
parameters w and b that maximize the likelihood of the observed data.
We solve this nonlinear regression problem by iteratively maximizing the
likelihood with respect to each parameter, holding the other constant.
Given w, b is easily calculated as the correlation between 8yp and
(w-$)%180°, and standard one-dimensional optimization techniques can
be used to optimize w given b. Confidence intervals for the preferred axis
are derived using the fact that twice the difference in log likelihood
between the optimal w and some other value is approximately distributed
as x> (McCullagh and Nelder, 1989). Confidence intervals for b can be
computed as in simple linear regression. Finally, we observe that b plays
the same role regarding hypothesis testing here as in linear regression; if
b is significantly different from zero, the model is supported by the data,
and the null hypothesis that the 8y does not depend on ¢ (i.e., the visual
planning model) is rejected.
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Figure 6. Hypothetical near point data generated from
Equation 3. A4, C, Near point location with respect to the

obstacle tip. B, D, Near point angle as a function of presen-
tation angle. A, B, b = 0.5; = 160°. The line in A is the
preferred axis, and the vertical lines in B mark the zero
crossings at o and w + 180°. C, D, b = 0; no systematic
variation of near point placement. For ease of comparison

Y (cm)

with the experimental results presented below, the distances
from the obstacle tip in 4 and C were sampled randomly from
experimental data.

Figure 7. Sample paths, J. M. at posi-
tion 1. Black paths are clockwise move-
ments; gray paths are counterclockwise.
Circles indicate near points. Presenta-
tion angles for trials in the two figures
are 90° apart, but the paths have been
rotated into a canonical position for

RESULTS

Subjects were able to perform the task easily, never colliding with
the obstacle on more than one or two trials per session. The mean
(SD) movement time across subjects was 736 (118) msec.

If the visual planning model were correct, there should be no
systematic variation in trajectory shape as the presentation angle
changes. However, participants’ paths did not display this rota-
tional symmetry. Figure 7 shows two sets of paths from one
participant, rotated into a canonical orientation. The presentation
angles for the trials in the two panels were ~90° apart, and there
are marked differences between these two sets of movements.
Those in the left panel are fairly symmetric, with near points
clustering along the line of the obstacle. But when the presenta-
tion angle was shifted 90°, the paths became much less symmetric.
In particular, near points tended to cluster away from the obstacle

comparison. Insets, Actual orientations
of the movements. In the left panel, the
presentation angles were near the pre-
ferred axis.

tip. Such differences in movement path were characteristic of all
participants in the experiment; at some presentation angles paths
tended to be symmetric, and at other angles they were more
skewed.

The lack of rotational symmetry in obstacle avoidance paths
can be seen more clearly by looking at all the landmark locations
in an experiment. If planning is performed in Cartesian space,
the position of the landmarks relative to the obstacle should be
independent of the presentation angle, ¢. Because ¢ was chosen
uniformly throughout the circle, the landmark locations would
then be uniformly distributed as well. Figures 8 and 9 show the
location of all four landmarks for two participants, one at each
joint space location. The left columns show landmark locations
relative to the obstacle tip. Note that in each case landmark
density varies around the circle. This effect is seen more clearly in
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Figure 8. Landmark locations and angles for P. B. at position 1. From the
top, near point, apex, curvature peak, and velocity minimum. Crosses,
Clockwise movements; circles, counterclockwise movements.

the & versus ¢ plots, shown in the right columns. There is a
dependence of landmark angle on presentation angle in every
case, but there is a particularly simple and suggestive order to the
near point angles, which appear to be piece-wise linear with
negative slope. Comparing these plots with the model-generated
data in Figure 6, we see that the experimental data qualitatively
match the model prediction with slope b > 0.

We can quantify this agreement by fitting the piece-wise linear
model of Equation 3 to each data set, yielding estimates of the
preferred axis o and the slope b. Figure 10 summarizes the
results. The main point is that for every participant, in both
locations, the regression has a significantly positive slope, with a
mean (SD) of 0.17 (0.05). Furthermore, the preferred axis is
roughly constant across participants for a given position in joint
space but differs significantly with arm configuration (one-way
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Figure 9. Landmark locations and angles for J. M. at position 2. From
the top, near point, apex, curvature peak, and velocity minimum. Crosses,
Clockwise movements; circles, counterclockwise movements.

ANOVA, p = 0.001). These findings indicate the existence of a
joint space-dependent preferred axis for near point placement
and cast serious doubt on the viability of the strict visual planning
model for obstacle avoidance movements.

Although the piece-wise linear model does account for a sig-
nificant amount of the variance in near point angles, there are
some aspects of the data it does not capture. In particular, the
direction of movement has a significant effect on the shape of the
path. Consider again Figure 7, right panel, which shows move-
ments with presentation angles near the antipreferred axis. The
paths are skewed toward the movement origin, and the near
points for the two directions of movement lie in separate clusters,
each closer to the respective target. This example is a special case,
because the model is discontinuous at ¢ = o * 90° and there is
no reason to prefer one side of the obstacle over the other for near
point placement. However, this same direction-dependent bias in
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near point angle exists across presentation angles. Figure 11
shows near point angles from all 10 experiments, with presenta-
tion angles aligned to the respective preferred axis. Figure 11, A
and B, shows the clockwise (CW) and counterclockwise (CCW)
near point angles separately, each with its overall mean: —10.9°
for CW movements and 9.4° for CCW movements. Figure 11C
overlays the two groups of near points with their biases removed.
The two data sets now largely overlap. Finally, Figure 11D shows
the difference between 8y p " and 8y ™ for each trial pair;
the positive bias persists for all presentation angles. The differ-
ence between the two directions of movements can thus be
described as a bias in near point placement toward the movement
target.

Returning now to the preferred axis regression, we can compare
the results with the predictions of the sensitivity models introduced
above. A summary of the comparison is shown in Figure 12, in
which the preferred axes for the two experimental positions are
plotted against each other for each subject. Note that the area of
the plot represents the space of possible model predictions. If the
preferred axis were independent of location in the workspace, the
data would lie on the dashed line representing identity. In fact, the
data lie significantly above this line, as do the predictions from all
three sensitivity models. This illustrates that the sensitivity model
in general is able to capture the dependence of the preferred axis
on workspace position qualitatively. The mobility model in partic-
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ular exhibits good quantitative agreement with the data, especially
considering the range of possible predictions.

DISCUSSION

There are three main points of this paper: (1) we introduced the
obstacle rotation paradigm, which provides a means for the sys-
tematic study of trajectory planning of obstacle avoidance move-
ments; (2) the experiment revealed a dependence of movement
path on presentation angle, ruling out a strict visual planning
model; and (3) the nature of the variation is consistent with a
sensitivity model of path planning. We discuss each of these
points in turn.

Obstacle avoidance

One reason researchers are still largely divided over the validity
of the visual-planning model is the fact that most relevant studies
have been limited to simple point-to-point reaching movements.
The class of models that has proven most successful in capturing
these experimental data is based on the principle of optimal
control. These are essentially models of smoothness or efficiency,
defined either extrinsically (Nelson, 1983; Flash and Hogan,
1985) or intrinsically (Hasan, 1986; Uno et al., 1989). Point-to-
point movement tasks impose no external constraints; therefore,
smoothness criteria may be all that the CNS can use to choose
between possible trajectories. Nelson (1983) argues for a combi-
nation of optimization criteria, weighted according to the task at
hand. We subscribe to this point of view but suggest that when
extra task constraints are added, the CNS will incorporate new
planning criteria aimed at optimally satisfying those constraints.
Obstacle avoidance movements provide an experimental para-
digm for exploring this hypothesis, because they involve a clear
criterion by which the CNS could weigh potential trajectories: the
likelihood of colliding with the obstacle.

Other researchers have investigated reaching under similar
conditions. Abend et al. (1982) asked participants to reach around
a linear obstacle protruding into the straight line path. They
found that the resulting trajectories displayed high-curvature,
low-velocity regions near the tip of the obstacle, as if participants
had segmented the task into two parts, getting past the obstacle
and then getting to the target. Flash and Hogan (1985) showed
that this behavior could be captured by the minimum jerk model
if a via point constraint was introduced, i.e., a location in space
through which the trajectory is constrained to pass. Because this
model leaves open the question of how the via point would be
chosen, it makes no predictions regarding the movement asym-
metries seen here. Dean and Briiwer (1994) conducted a more
comprehensive study along the same lines. In agreement with our
results, they found that obstacle avoidance paths vary over the
location and orientation of the movement in the workspace.
Although they argued that this result was inconsistent with a strict
visual planning model, there was no systematic variation of the
task constraints. The obstacle rotation paradigm provides such a
systematic approach, allowing us to investigate the principles
underlying observed variations in the movement plan.

Systematic path variations

We have argued that the dependence of the landmark locations on
the presentation angle rules out a strict visual planning model.
However, there are alternate explanations for these data. Let us
begin by assuming that the movement variations are truly planned,
i.e., they are represented in the central neural command. In this
case, there must be some criteria by which the CNS varies the path
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Comparison of clockwise (CW) and counterclockwise (CCW) near point placement. These composite plots contain half the data (randomly

selected) from each of the 10 experiments. The abscissa represents the presentation angle relative to the preferred axis of each experiment, ¢-w. 4, B,
Near point angles 8y p for CW and CCW movements. The dashed lines represent the mean &y p of all the near point angles for each direction. C, CCW
and CW 8yp plotted together, each with the mean from the top plots removed. D, Trial pairwise differences in near point angle, 8yp ““V-8yp V. The

thick curve is a local linear smoothing of the data.

according to presentation angle. Those criteria could be based on
any combination of visual cues or distortion, kinematics of the arm,
or dynamics of the arm. The sensitivity models presented in this
paper fall into the two latter categories, which are both inconsistent
with a visual planning model. What about the possibility that the
path asymmetries have a purely perceptual origin? It is known that
visual distortions of the workspace can be associated with corre-
sponding distortions in movement path in the case of point-to-
point reaching (Wolpert et al., 1994). The data presented in this
paper cannot rule out a perceptual genesis of the movement
asymmetries described above. However, this possibility has been
excluded by comparing the near point distributions from two
experiments centered at the same point along the participant’s
midline but performed with opposite hands. The preferred axes of
the two experiments turn out to be reflections of each other about
the sagittal plane, as would be expected if the asymmetries were
attributable to the details of the biomechanical plant. This mirror

symmetry would not result if the effects described in this paper
were attributable to perceptual distortions (Sabes, 1996).

Finally, it is possible that the results of the obstacle rotation
experiment are attributable entirely to low-level dynamic factors
and not to a central planning mechanism. This concern is also not
addressed by the results of this paper, but see the work of Sabes
(1996).

The sensitivity model

The three sensitivity models qualitatively capture the main fea-
tures of interest in the experimental data: the clustering of near
points about a preferred axis and the dependence of that axis on
workspace location. The mobility model provides the best quan-
titative match to the experimental data, suggesting that the CNS
uses information about the inertia of the arm in planning obstacle
avoidance movements. It has been shown that when participants
are asked to estimate the location of the tip of a visually occluded
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object that they are allowed to wield freely, their responses are
quite accurate and are predictable given only the eigenstructure
of the inertia of the object (Fitzpatrick et al., 1994). Because the
CNS is good at estimating the inertia of objects with which it
interacts dynamically, it is reasonable that it would have access to
information regarding the inertia of the arm itself.

The interesting difference between the three sensitivity models
is the nature of the information they embody—purely kinematic or
both kinematic and dynamic, for example—and not the specific
analytic details. Although the superior quantitative fit of the mo-
bility model suggests that the inertia of the arm may be of primary
importance, the three sensitivity matrices are similar both in their
analytic form and in the orientation of their eigenvectors. Analyt-
ically, they are the transformation of an intrinsic matrix (the joint
space uncertainty, inertia, or admittance, respectively) into Carte-
sian space. The first of these was assumed to be a scalar multiple of
the identity matrix, and the latter two have diagonal entries of
comparable magnitude, which are larger than the off-diagonals,
meaning that they induce little rotation. Thus, the orientation of
the eigenvectors of the these matrices is dominated by the Jaco-
bian. Furthermore, the models we have considered are somewhat
simplistic. For example, our admittance matrices were based on the
quasistatic measurements of Mussa-Ivaldi et al. (1985), yet it has
been shown that the stiffness of the arm changes during the course
of a movement (Bennet, 1990; Gomi and Kawato, 1996). And we
have not considered other aspects of the dynamics of the arm,
which could represent measures of sensitivity, most notably the
viscosity. In part, this omission is attributable to the difficulty in
making precise measurements or model-based estimates of the
relevant quantities. But more importantly, the ability to distinguish
between quantitatively similar sensitivity models (or combinations
of them) will not depend on collecting more precise estimates of a
greater number of relevant kinematic and dynamic quantities but,
rather, requires a method that separates out the influences of these
various types of information. For example, one could repeat our
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experiment after altering the effective inertia of the arm, leaving
the rest of its kinematics and dynamics unchanged (Sainburg and
Ghez, 1995).

Whatever its exact definition, the sensitivity constraint, in iso-
lation, would be maximally satisfied if the near point always lay at
the preferred axis, i.e., if the slope of Equation 3 were unity. Why
then do we find a relatively small value of 0.17 for the mean
estimated slope in our experiments? First, at presentation angles
90° away from the preferred axis, the model has no preference for
direction of the near point angle. This ambivalence is seen in the
data as well. Figure 11, 4 and B, shows large near point angles of
both signs at the antipreferred axes, resulting in a downward bias
in the estimated slopes. Nonetheless, the same figure shows that
the “true” slope is certainly smaller that unity. Why is the sensi-
tivity criterion only partially satisfied? We argue that this is the
result of a tradeoff between a set of planning criteria, of which the
sensitivity-based collision avoidance scheme is only one. For
example, some notion of smoothness is almost surely a consider-
ation in the planning process, and larger near point angles result
in less symmetric paths, decreasing the overall smoothness of the
movement. The difference between clockwise and counterclock-
wise movements may reflect another such criterion, one in which
there is a preference for paths skewed toward the movement
origin (perhaps to allow time for feedback to influence the move-
ment before crossing close to the obstacle).

And finally, we note that these results are not necessarily
inconsistent with recent perturbation studies supporting the vi-
sual planning model for point-to-point reaching (Flanagan and
Rao, 1995; Wolpert et al., 1995; Sabes, 1996). A Cartesian plan-
ner could have at its disposal information about the inertial
properties of the arm in extrinsic space, i.e., about the mobility of
the arm, and it could use this information to plan obstacle avoid-
ance trajectories in that space. This may be just one example of a
general strategy in which the planner incorporates various addi-
tional criteria from a repertoire designed to deal with the wide
range of kinematic and dynamic constraints encountered in daily
activities.

REFERENCES

Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation.
Brain 105:331-348.

Bennet DJ (1990) The control of human arm movements: models and
mechanical constraints. PhD thesis, Massachusetts Institute of
Technology.

Bernstein N (1967) The co-ordination and regulation of movements.
Oxford: Pergamon.

Bizzi E, Polit A, Morasso P (1976) Mechanism underlying achievement
of final head position. J Neurophysiol 39:435-444.

Bizzi E, Accornero N, Chapple W, Hogan N (1982) Arm trajectory
formation in monkeys. Exp Brain Res 46:139-143.

Dean J, Briiwer M (1994) Control of human arm movements in two
dimensions: paths and joint control in avoiding simple linear obstacles.
Exp Brain Res 97:497-514.

Desmurget M, Prablanc C, Rossetti Y, Arzi M, Paulignan Y, Urquizar C
(1995) Postural and synergic control for three-dimensional movements
of reaching and grasping. J Neurophysiol 74:905-910.

Fitzpatrick P, Carello C, Turvey MT (1994) Eigenvalues of the inertia
tensor and exteroception by the “muscular sense.” Neuroscience
60:551-568.

Flanagan JR, Ostry DJ (1990) Trajectories of human multi-joint arm
movements: evidence of joint level planning. In: Experimental robotics
I, Lecture notes in control and information sciences. (Hayward V,
Khatib O, eds), pp 594-613. Berlin: London: Springer.

Flanagan JR, Rao AK (1995) Trajectory adaptation to a nonlinear
visuomotor transformation: evidence of motion planning in visually
perceived space. J Neurophysiol 74:2174-2178.



7128 J. Neurosci., September 15, 1997, 17(18):7119-7128

Flash T, Gurevich I (1991) Human motor adaptation to external loads.
In: Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Vol 13, pp 885-886. New
York: IEEE.

Flash T, Hogan N (1985) The co-ordination of arm movements: an
experimentally confirmed mathematical model. J Neurosci
5:1688-1703.

Gomi H, Kawato M (1996) Equilibrium-point control hypothesis exam-
ined by measured arm stiffness during multijoint movement. Science
272:117-119.

Hasan Z (1986) Optimized movement trajectories and joint stiffness in
unperturbed, inertially loaded movements. Biol Cybern 53:373-382.
Hogan N (1984) An organizing principle for a class of voluntary move-

ments. J Neurosci 4:2745-2754.

Hogan N (1985) The mechanics of multi-joint posture and movement
control. Biol Cybern 52:315-331.

Kaminsky T, Gentile AM (1986) Joint control strategies and hand tra-
jectories in multijoint pointing movements. J Mot Behav 18:261-278.
Lackner JR, DiZio P (1994) Rapid adaptation to coriolis force pertur-

bations of arm trajectory. J Neurophysiol 72:299-313.

LeVeau BF (1992) Williams & Lissner’s biomechanics of human motion.
Philadelphia: Saunders.

McCullagh P, Nelder JA (1989) Generalized linear models. London:
Chapman and Hall.

Morasso P (1981) Spatial control of arm movements. Exp Brain Res
42:223-2217.

Sabes and Jordan ¢ Obstacle Avoidance and Perturbation Sensitivity Model

Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and
geometric factors subserving arm posture. J Neurosci 5:2732-2743.
Nelson WL (1983) Physical principles for economics of skilled move-

ments. Biol Cybern 46:135-147.

Sabes PN (1996) The planning of visually guided arm movements: feed-
back perturbation and obstacle avoidance studies. PhD thesis, Massa-
chusetts Institute of Technology.

Sainburg RL, Ghez C (1995) Limitations in the learning and generali-
zation of multijoint dynamics. Soc Neurosci Abstr 21:686.

Scott SH, Loeb GE (1994) The computation of position sense from
spindles in mono- and multiarticular muscles. J Neurosci 14:7529-7540.

Shademehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dy-
namics during learning of a motor task. J Neurosci 14:3208-3224.

Soechting JF, Lacquaniti F (1981) Invariant characteristics of a pointing
movement in man. J Neurosci 1:710-720.

Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal
trajectories in human multijoint arm movements: minimum torque-
change model. Biol Cybern 61:89-101.

Wolpert DM, Ghahramani Z, Jordan MI (1994) Perceptual distortion
contributes to the curvature of human reaching movements. Exp Brain
Res 98:153-156.

Wolpert DM, Ghahramani Z, Jordan MI (1995) Are arm trajectories
planned in kinematic or dynamic coordinates? An adaptation study.
Exp Brain Res 103:460-470.

Yoshikawa T (1990) Foundations of robotics: analysis and control. Cam-
bridge, MA: Massachusetts Institute of Technology.



